Functional traits of a plant species fingerprint ecosystem productivity along broad elevational gradients in the Himalayas
Shalik Ram Sigdel
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorCorresponding Author
Eryuan Liang
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Correspondence
Eryuan Liang
Email: [email protected]
Search for more papers by this authorMaan Bahadur Rokaya
Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
Department of Biodiversity Research, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
Search for more papers by this authorSamresh Rai
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorNita Dyola
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorJian Sun
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorLin Zhang
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorHaifeng Zhu
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorNakul Chettri
International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal
Search for more papers by this authorRam Prasad Chaudhary
Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal
Search for more papers by this authorJ. Julio Camarero
Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana, Zaragoza, Spain
Search for more papers by this authorJosep Peñuelas
CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
CREAF, Cerdanyola del Vallès, Catalonia, Spain
Search for more papers by this authorShalik Ram Sigdel
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorCorresponding Author
Eryuan Liang
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Correspondence
Eryuan Liang
Email: [email protected]
Search for more papers by this authorMaan Bahadur Rokaya
Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
Department of Biodiversity Research, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
Search for more papers by this authorSamresh Rai
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorNita Dyola
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorJian Sun
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorLin Zhang
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorHaifeng Zhu
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorNakul Chettri
International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal
Search for more papers by this authorRam Prasad Chaudhary
Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal
Search for more papers by this authorJ. Julio Camarero
Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana, Zaragoza, Spain
Search for more papers by this authorJosep Peñuelas
CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
CREAF, Cerdanyola del Vallès, Catalonia, Spain
Search for more papers by this authorAbstract
en
- It is a challenge to scale-up from simplified proxies to ecosystem functioning since the inherent complexity of natural ecosystems hinders such an approach. One way to address this complexity is to track ecosystem processes through the lens of plant functional traits. Elevational gradients with diverse biotic and abiotic conditions offer ideal settings for inferring functional trait responses to environmental gradients globally. However, most studies have focused on differences in mean trait values among species, and little is known on how intraspecific traits vary along wide elevational gradients and how this variability reflects ecosystem productivity.
- We measured functional traits of the sub-shrub Koenigia mollis (Basionym: Polygonum molle; a widespread species) in 11 populations along a wide elevational gradient (1515–4216 m) considering from subtropical forest to alpine treeline in the central Himalayas. After measuring different traits (plant height, specific leaf area, leaf area, length of flowering branches, leaf carbon isotope (δ13C), leaf carbon and leaf nitrogen concentrations), we investigated drivers on changes of these traits and also characterized their relationships with elevation, climate and ecosystem productivity.
- All trait values decreased with increasing elevation, except for δ13C that increased upwards. Likewise, most traits showed strong positive relationships with potential evapotranspiration, while δ13C exhibited a negative relationship. In this context, elevation-dependent water–energy dynamics is the primary driver of trait variations. Furthermore, six key traits (plant height, length of flowering branch, specific leaf area, leaf carbon, leaf nitrogen and leaf δ13C) explained 90.45% of the variance in ecosystem productivity.
- Our study evidences how elevation-dependent climate variations affect ecosystem processes and functions. Intraspecific variability in leaf functional traits is strongly driven by changes in water–energy dynamics, and reflects changes in ecosystem productivity over elevation. K. mollis, with one of the widest elevational gradients known to date, could be a model species to infer functional trait responses to environmental gradients globally. As inferred from K. mollis, the water–energy dynamics can be a hydrothermal variable to understand the formation of vegetation boundaries, such as alpine treeline. This study sheds new insight on how plants modify their basic ecological strategies to cope with changing environments.
Read the free Plain Language Summary for this article on the Journal blog.
摘要
zh
- 由于生态系统固有的复杂性,如何利用简单易测的指标反映生态系统过程和功能变化一直是生态学研究的难点问题。植物功能性状是植物个体对环境变化响应的适应特征,为利用物种水平指标来指示生态系统功能提供了可能。随海拔的变化,生境条件发生了显著变化,而同时,不同尺度的生物因子如植物个体特征、群落结构和生态系统功能也随之变化。因此,海拔梯度为研究物种和生态系统功能对环境变化的响应提供了理想的平台。已有研究大部分集中在利用多个物种的功能性状来综合反映生态系统过程和功能,然而,单个物种的功能性状是否能用来指示生态系统功能的变化尚不明确。
- 喜马拉雅山区拥有地球上最大海拔跨度,形成了从热带到寒带的陆地生态系统垂直景观。绢毛蓼(Koenigia mollis)是喜马拉雅山脉中部地区广泛分布的一种半灌木,其分布跨越了从亚热带常绿阔叶林到高寒树线约2700 m(1515–4216 m)的海拔跨度。我们沿海拔梯度选择了11个绢毛蓼种群,系统测定了与生长及养分利用密切相关的7个关键植物功能性状,即植株高度、叶面积(LA)、比叶面积(SLA)、花枝长度、叶碳稳定同位素比值(δ13C),叶碳含量(C)和氮含量(N)。
- 结果显示:植株高度、SLA、LA、C和N均随海拔的升高而降低,且这些性状均与表征生态系统水分动态的潜在蒸散量(PET)呈正相关关系;δ13C随海拔的升高而增大,并与PET呈负相关关系。这表明由海拔变化引起的水分-能量动态是驱动绢毛蓼功能性状变化的主要环境因子,绢毛蓼通过形成面积更小、建成成本更高和水分利用效率更高的叶片来适应高海拔地区的生境。同时,研究发现绢毛蓼的植株高度和SLA等6个主要功能性状能解释生态系统生产力90.45%的变化,表明单个物种的性状变化能有效指示生态系统水平的功能变化。
- 本研究以海拔梯度带作为研究模板,阐明了环境变化对生态系统过程和功能的影响,指出水分-能量动态在调控物种特征和生态系统功能中的重要作用,强调了广布种的性状可以指示海拔梯度带上生态系统功能变化。绢毛蓼作为已知的全球最大海拔跨度物种之一,可以作为探究植物功能性状如何响应环境变化的模式植物。绢毛蓼的研究也暗示,水分-能量动态是理解植被边界(例如,高山树线)形成的重要指标。此研究针对植物如何改变生态策略适应环境变化方面提出了新见解。
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on the National Tibetan Plateau Data Center https://doi.org/10.11888/Terre.tpdc.272843 (Sigdel et al., 2022).
Supporting Information
Filename | Description |
---|---|
fec14226-sup-0001-supinfo.docxWord 2007 document , 1.4 MB |
Appendix S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Ale, R., Zhang, L., Li, X., Raskoti, B. B., Pugnaire, F. I., & Luo, T. (2018). Water shortage drives interactions between cushion and beneficiary species along elevation gradients in dry Himalayas. Journal of Geophysical Research: Biogeosciences, 123(1), 226–238. https://doi.org/10.1002/2017JG004365
- Anderegg, L. D. L., Loy, X., Markham, I. P., Elmer, C. M., Hovenden, M. J., HilleRisLambers, J., & Mayfield, M. M. (2021). Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees. New Phytologist, 229(3), 1375–1387. https://doi.org/10.1111/nph.16795
- Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G., & Tuttle, S. E. (2019). Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 116(28), 14071–14076. https://doi.org/10.1073/pnas.1904747116
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
- Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Rüger, N., Beck, P. S. A., Blach-Overgaard, A., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Georges, D., Goetz, S. J., Guay, K. C., Henry, G. H. R., HilleRisLambers, J., Hollister, R. D., Karger, D. N., Kattge, J., Manning, P., … Weiher, E. (2018). Plant functional trait change across a warming tundra biome. Nature, 562, 57–62. https://doi.org/10.1038/s41586-018-0563-7
- Blonder, B., Escobar, S., Kapás, R. E., & Michaletz, S. T. (2020). Low predictability of energy balance traits and leaf temperature metrics in desert, montane and alpine plant communities. Functional Ecology, 34(9), 1882–1897. https://doi.org/10.1111/1365-2435.13643
- Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., Rudolf, V. H. W., Schreiber, S. J., Urban, M. C., & Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26(4), 183–192. https://doi.org/10.1016/j.tree.2011.01.009
- Campbell, G. S., & Norman, J. M. (1998). An introduction to environmental biophysics (Vol. 2). Springer.
- Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D., & Farquhar, G. D. (2013). Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytologist, 200(4), 950–965. https://doi.org/10.1111/nph.12423
- Cornelissen, J., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D., Reich, P. B., Ter Steege, H., Morgan, H., & Van Der Heijden, M. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4), 335–380. https://doi.org/10.1071/BT02124
- Cui, E., Huang, K., Arain, M. A., Fisher, J. B., Huntzinger, D. N., Ito, A., Luo, Y., Jain, A. K., Mao, J., Michalak, A. M., Niu, S., Parazoo, N. C., Peng, C., Peng, S., Poulter, B., Ricciuto, D. M., Schaefer, K. M., Schwalm, C. R., Shi, X., … Xia, J. (2019). Vegetation functional properties determine uncertainty of simulated ecosystem productivity: A traceability analysis in the East Asian Monsoon region. Global Biogeochemical Cycles, 33(6), 668–689. https://doi.org/10.1029/2018GB005909
- Des Roches, S., Post, D. M., Turley, N. E., Bailey, J. K., Hendry, A. P., Kinnison, M. T., Schweitzer, J. A., & Palkovacs, E. P. (2018). The ecological importance of intraspecific variation. Nature Ecology and Evolution, 2, 57–64. https://doi.org/10.1038/s41559-017-0402-5
- Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529, 167–171. https://doi.org/10.1038/nature16489
- Dostálek, T., Rokaya, M. B., Maršík, P., Rezek, J., Skuhrovec, J., Pavela, R., & Münzbergová, Z. (2016). Trade-off among different anti-herbivore defence strategies along an altitudinal gradient. AoB Plants, 8, plw026. https://doi.org/10.1093/aobpla/plw026
- Drollinger, S., Müller, M., Kobl, T., Schwab, N., Böhner, J., Schickhoff, U., & Scholten, T. (2017). Decreasing nutrient concentrations in soils and trees with increasing elevation across a treeline ecotone in Rolwaling Himal, Nepal. Journal of Mountain Science, 14, 843–858. https://doi.org/10.1007/s11629-016-4228-4
- Dyola, N., Sigdel, S. R., Liang, E., Babst, F., Camarero, J. J., Aryal, S., Chettri, N., Gao, S., Lu, X., Sun, J., Wang, T., Zhang, G., Zhu, H., Piao, S., & Peñuelas, J. (2022). Species richness is a strong driver of forest biomass along broad bioclimatic gradients in the Himalayas. Ecosphere, 13, e4107. https://doi.org/10.1002/ecs2.4107
- Enquist, B. J., Norberg, J., Bonser, S. P., Violle, C., Webb, C. T., Henderson, A., Lindsey, L. S., & Savage, V. M. (2015). Scaling from traits to ecosystems: Developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Advances in Ecological Research, 52, 249–318. https://doi.org/10.1016/bs.aecr.2015.02.001
- Evans, J., & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24, 755–767. https://doi.org/10.1046/j.1365-3040.2001.00724.x
- Filella, I., & Peñuelas, J. (1999). Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecology, 145, 157–165. https://doi.org/10.1023/A:1009826803540
- Fisher, J. B. (2014). Land-atmosphere interactions: Evapotranspiration. In E. Njoku (Ed.), Encyclopedia of remote sensing (pp. 1–5). Springer.
- Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., & Graves, S. (2012). Package ‘car’. R Foundation for Statistical Computing.
- Halbritter, A. H., Fior, S., Keller, I., Billeter, R., Edwards, P. J., Holderegger, R., Karrenberg, S., Pluess, A. R., Widmer, A., & Alexander, J. M. (2018). Trait differentiation and adaptation of plants along elevation gradients. Journal of Evolutionary Biology, 31(6), 784–800. https://doi.org/10.17605/osf.io/yfj9m
- He, N., Liu, C., Piao, S., Sack, L., Xu, L., Luo, Y., He, J., Han, X., Zhou, G., Zhou, X., Lin, Y., Yu, Q., Liu, S., Sun, W., Niu, S., Li, S., Zhang, J., & Yu, G. (2019). Ecosystem traits linking functional traits to macroecology. Trends in Ecology & Evolution, 34, 200–210. https://doi.org/10.1016/j.tree.2018.11.004
- Hikosaka, K., Kurokawa, H., Arai, T., Takayanagi, S., Tanaka, H. O., Nagano, S., & Nakashizuka, T. (2021). Intraspecific variations in leaf traits, productivity and resource use efficiencies in the dominant species of subalpine evergreen coniferous and deciduous broad-leaved forests along the altitudinal gradient. Journal of Ecology, 109(4), 1804–1818. https://doi.org/10.1111/1365-2745.13603
- Ito, A. (2011). A historical meta-analysis of global terrestrial net primary productivity: Are estimates converging? Global Change Biology, 17(10), 3161–3175. https://doi.org/10.1111/j.1365-2486.2011.02450.x
- Joswig, J. S., Wirth, C., Schuman, M. C., Kattge, J., Reu, B., Wright, I. J., Sippel, S. D., Rüger, N., Richter, R., Schaepman, M. E., van Bodegom, P. M., Cornelissen, J. H. C., Díaz, S., Hattingh, W. N., Kramer, K., Lens, F., Niinemets, Ü., Reich, P. B., Reichstein, M., … Mahecha, M. D. (2021). Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology & Evolution, 6, 36–50. https://doi.org/10.1038/s41559-021-01616-8
- Kattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Garnier, E., Westoby, M., Reich, P. B., Wright, I. J., Cornelissen, J. H. C., Violle, C., Harrison, S. P., van Bodegom, P. M., Reichstein, M., Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand, M., … Wirth, C. (2011). TRY – A global database of plant traits. Global Change Biology, 17(9), 2905–2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x
- Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006
- Kumar, M., Singh, H., Pandey, R., Singh, M. P., Ravindranath, N. H., & Kalra, N. (2019). Assessing vulnerability of forest ecosystem in the Indian Western Himalayan region using trends of net primary productivity. Biodiversity and Conservation, 28, 2163–2182. https://doi.org/10.1007/s10531-018-1663-2
- Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C., Poorter, L., Vanderwel, M., Vieilledent, G., Wright, S. J., Aiba, M., Baraloto, C., Caspersen, J., Cornelissen, J. H. C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J., Kurokawa, H., … Westoby, M. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204–207. https://doi.org/10.1038/nature16476
- Lefcheck, J. S. (2016). PiecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7(5), 573–579. https://doi.org/10.1111/2041-210X.12512
- Leigh, A., Sevanto, S., Close, J. D., & Nicotra, A. B. (2017). The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions? Plant, Cell & Environment, 40(2), 237–248. https://doi.org/10.1111/pce.12857
- Li, Y., Hou, J., Xu, L., Li, M., Chen, Z., Zhang, Z., & He, N. (2022). Variation in functional trait diversity from tropical to cold-temperate forests and linkage to productivity. Ecological Indicators, 138, 108864. https://doi.org/10.1016/j.ecolind.2022.108864
- Li, Y., Liu, C., Sack, L., Xu, L., Li, M., Zhang, J., & He, N. (2022). Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecology Letters, 25(6), 1442–1457. https://doi.org/10.1111/ele.14009
- Li, Y., Zou, D., Shrestha, N., Xu, X., Wang, Q., Jia, W., & Wang, Z. (2020). Spatiotemporal variation in leaf size and shape in response to climate. Journal of Plant Ecology, 13(1), 87–96. https://doi.org/10.1093/jpe/rtz053
- Liu, Y., Li, G., Wu, X., Niklas, K. J., Yang, Z., & Sun, S. (2021). Linkage between species traits and plant phenology in an alpine meadow. Oecologia, 195, 409–419. https://doi.org/10.1007/s00442-020-04846-y
- Lu, X., Liang, E., Babst, F., Camarero, J. J., & Büntgen, U. (2022). Warming-induced tipping points of Arctic and alpine shrub recruitment. Proceedings of the National Academy of Sciences of the United States of America, 119(9), e2118120119. https://doi.org/10.1073/pnas.2118120119
- Maharjan, S. K., Sterck, F. J., Dhakal, B. P., Makri, M., & Poorter, L. (2021). Functional traits shape tree species distribution in the Himalayas. Journal of Ecology, 109(11), 3818–3834. https://doi.org/10.1111/1365-2745.13759
- Manandhar, N. P. (2002). Plants and people of Nepal. Timber Press, Inc.
- McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21(4), 178–185. https://doi.org/10.1016/j.tree.2006.02.002
- Midolo, G., De Frenne, P., Hölzel, N., & Wellstein, C. (2019). Global patterns of intraspecific leaf trait responses to elevation. Global Change Biology, 25(7), 2485–2498. https://doi.org/10.1111/gcb.14646
- Miehe, G., Pendry, C. A., & Chaudhary, R. P. (2015). Nepal: An introduction to the natural history, ecology and human environment in the Himalayas. Royal Botanic Garden Edinburgh.
- Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: The critical role of hotspots. In F. Zachos & J. Habel (Eds.), Biodiversity hotspots (pp. 3–22). Springer.
- Nan, X., Li, A., Zhao, W., Bian, J., Jin, H., Deng, W., & Koirala, H. L. (2017). Spatio-temporal patterns of the net primary productivity in Southern Himalayas during 2001–2015. In A. Li, W. Deng, & W. Zhao (Eds.), Land cover change and its eco-environmental responses in Nepal (pp. 185–201). Springer.
- Niu, S., Classen, A. T., & Luo, Y. (2018). Functional traits along a transect. Functional Ecology, 32, 4–9. https://doi.org/10.1111/1365-2435.13023
- O'Brien, E. M. (2006). Biological relativity to water–energy dynamics. Journal of Biogeography, 33(11), 1868–1888. https://doi.org/10.1111/j.1365-2699.2006.01534.x
- O'Sullivan, K. S. W., Vilà-Cabrera, A., Chen, J. C., Greenwood, S., Chang, C. H., & Jump, A. S. (2022). High intraspecific trait variation results in a resource allocation spectrum of a subtropical pine across an elevational gradient. Journal of Biogeography, 49(4), 668–681. https://doi.org/10.1111/jbi.14336
- Pérez-Harguindeguy, N., Diaz, S., Gamier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M., Comwell, W., Craine, J., Gurvich, D., Urcelay, C., Veneklaas, E., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J., de Vos, A., … Cornelissen, J. (2013). New handbook for stand-ardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167–234. https://doi.org/10.1071/bt12225
- Pfennigwerth, A. A., Bailey, J. K., & Schweitzer, J. A. (2017). Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity. AoB Plants, 9(4), plx027. https://doi.org/10.1093/aobpla/plx027
- Poorter, L., Wright, S. J., Paz, H., Ackerly, D. D., Condit, R., Ibarra-Manríquez, G., Harms, K. E., Licona, J. C., Martínez-Ramos, M., Mazer, S. J., Muller-Landau, H. C., Peña-Claros, M., Webb, C. O., & Wright, I. J. (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89(7), 1908–1920. https://doi.org/10.1890/07-0207.1
- Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., & Wright, I. J. (2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecology Letters, 17(1), 82–91. https://doi.org/10.1111/ele.12211
- R Development Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
- Ray-Mukherjee, J., Nimon, K., Mukherjee, S., Morris, D. W., Slotow, R., & Hamer, M. (2014). Using commonality analysis in multiple regressions: A tool to decompose regression effects in the face of multicollinearity. Methods in Ecology and Evolution, 5(4), 320–328. https://doi.org/10.1111/2041-210X.12166
- Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders, N. J. (2014). Convergent effects of elevation on functional leaf traits within and among species. Functional Ecology, 28(1), 37–45. https://doi.org/10.1111/1365-2435.12162
- Reich, P. B. (2014). The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 102(2), 275–301. https://doi.org/10.1111/1365-2745.12211
- Reich, P. B., & Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11001–11006. https://doi.org/10.1073/pnas.0403588101
- Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 111, 13697–13702. https://doi.org/10.1073/pnas.1216065111
- Rixen, C., Wipf, S., Rumpf, S. B., Giejsztowt, J., Millen, J., Morgan, J. W., Nicotra, A. B., Venn, S., Zong, S., Dickinson, K. J. M., Freschet, G. T., Kurzböck, C., Li, J., Pan, H., Pfund, B., Quaglia, E., Su, X., Wang, W., Wang, X., … Deslippe, J. R. (2022). Intraspecific trait variation in alpine plants relates to their elevational distribution. Journal of Ecology, 110, 860–875. https://doi.org/10.1111/1365-2745.13848
- Rokaya, M. B., Dostálek, T., & Münzbergová, Z. (2016). Plant-herbivore interactions along elevational gradient: Comparison of field and common garden data. Acta Oecologica, 77, 168–175. https://doi.org/10.1016/j.actao.2016.10.011
- Running, S., & Zhao, M. (2019). MOD17A3HGF MODIS/Terra net primary production gap-filled yearly L4 global 500 m SIN grid V006. NASA EOSDIS land processes DAAC. https://doi.org/10.5067/MODIS/MOD17A3HGF.006
- Schuster, T. M., Reveal, J. L., Bayly, M. J., & Kron, K. A. (2015). An updated molecular phylogeny of Polygonoideae (Polygonaceae): Relationships of Oxygonum, Pteroxygonum, and Rumex, and a new circumscription of Koenigia. Taxon, 64(6), 1188–1208. https://doi.org/10.12705/646.5
- Serra-Maluquer, X., Gazol, A., Anderegg, W. R. L., Martínez-Vilalta, J., Mencuccini, M., & Camarero, J. J. (2022). Wood density and hydraulic traits influence species' growth response to drought across biomes. Global Change Biology, 28(12), 3871–3882. https://doi.org/10.1111/gcb.16123
- Shipley, B., Vile, D., Garnier, E., Wright, I. J., & Poorter, H. (2005). Functional linkages between leaf traits and net photosynthetic rate: Reconciling empirical and mechanistic models. Functional Ecology, 19(4), 602–615. https://doi.org/10.1111/j.1365-2435.2005.01008.x
- Sides, C. B., Enquist, B. J., Ebersole, J. J., Smith, M. N., Henderson, A. N., & Sloat, L. L. (2014). Revisiting Darwin's hypothesis: Does greater intraspecific variability increase species' ecological breadth? American Journal of Botany, 101(1), 56–62. https://doi.org/10.3732/ajb.1300284
- Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., Aarssen, L. W., Baraloto, C., Carlucci, M. B., Cianciaruso, M. V., L. Dantas, V., Bello, F., Duarte, L. D. S., Fonseca, C. R., Freschet, G. T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., … Wardle, D. A. (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18(12), 1406–1419. https://doi.org/10.1111/ele.12508
- Sigdel, S. R., Liang, E., Rokaya, M. B., Rai, S., Dyola, N., Sun, J., Zhang, L., Zhu, H., Chhetri, N., Chaudhary, R. P., Camarero, J. J., & Penuelas, J. (2022). Data from: Functional traits of a plant species fingerprint ecosystem productivity along broad elevational gradients in the Himalayas. National Tibetan Plateau Data Center. https://doi.org/10.11888/Terre.tpdc.272843
- Sigdel, S. R., Liang, E., Wang, Y., Dawadi, B., & Camarero, J. J. (2020). Tree-to-tree interactions slow down Himalayan treeline shifts as inferred from tree spatial patterns. Journal of Biogeography, 47(8), 1816–1826. https://doi.org/10.1111/jbi.13840
- Sigdel, S. R., Pandey, J., Liang, E., Muhammad, S., Babst, F., Leavitt, S. W., Shen, M., Zhu, H., Salerno, F., Piao, S., Camarero, J. J., & Peñuelas, J. (2021). No benefits from warming even for subnival vegetation in the Himalayas. Science Bulletin, 66(18), 1825–1829. https://doi.org/10.1016/j.scib.2021.06.005
- Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, H., Liang, E., & Peñuelas, J. (2018). Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Global Change Biology, 24(11), 5549–5559. https://doi.org/10.1111/gcb.14428
- Šmilauer, P., & Lepš, J. (2014). Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press.
- Stephenson, N. L. (1990). Climatic control of vegetation distribution: The role of the water balance. The American Naturalist, 135(5), 649–670. https://doi.org/10.1086/285067
- Suzuki, R., & Takahashi, K. (2020). Effects of leaf age, elevation and light conditions on photosynthesis and leaf traits in saplings of two evergreen conifers, Abies veitchii and A. mariesii. Journal of Plant Ecology, 13(4), 460–469. https://doi.org/10.1093/jpe/rtaa034
- Taneda, H., Kandel, D. R., Ishida, A., & Ikeda, H. (2016). Altitudinal changes in leaf hydraulic conductance across five Rhododendron species in eastern Nepal. Tree Physiology, 36(10), 1272–1282. https://doi.org/10.1093/treephys/tpw058
- Thornthwaite, C. W., & Mather, J. R. (1957). Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Institute of Technology, Publications in Climatology, USA.
- van de Weg, M. J., Meir, P., Grace, J., & Atkin, O. K. (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology & Diversity, 2(3), 243–254. https://doi.org/10.1080/17550870903518045
- van der Plas, F., Schröder-Georgi, T., Weigelt, A., Barry, K., Meyer, S., Alzate, A., Barnard, R. L., Buchmann, N., de Kroon, H., Ebeling, A., Eisenhauer, N., Engels, C., Fischer, M., Gleixner, G., Hildebrandt, A., Koller-France, E., Leimer, S., Milcu, A., Mommer, L., … Wirth, C. (2020). Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nature Ecology & Evolution, 4, 1602–1611. https://doi.org/10.1038/s41559-020-01316-9
- Vetaas, O. R., Paudel, K. P., & Christensen, M. (2019). Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. Journal of Biogeography, 46(8), 1652–1663. https://doi.org/10.1111/jbi.13564
- Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., Jung, V., & Messier, J. (2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27(4), 244–252. https://doi.org/10.1016/j.tree.2011.11.014
- Wang, H., Wang, R., Harrison, S. P., & Prentice, I. C. (2022). Leaf morphological traits as adaptations to multiple climate gradients. Journal of Ecology, 110(6), 1344–1355. https://doi.org/10.1111/1365-2745.13873
- Wang, J., Hu, A., Meng, F., Zhao, W., Yang, Y., Soininen, J., Shen, J., & Zhou, J. (2022). Embracing mountain microbiome and ecosystem functions under global change. New Phytologist, 234(6), 1987–2002. https://doi.org/10.1111/nph.18051
- Westerband, A. C., Knight, T. M., & Barton, K. E. (2021). Intraspecific trait variation and reversals of trait strategies across key climate gradients in native Hawaiian plants and non-native invaders. Annals of Botany, 127(4), 553–564. https://doi.org/10.1093/aob/mcaa050
- Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., Gallagher, R. V., Jacobs, B. F., Kooyman, R., Law, E. A., Leishman, M. R., Niinemets, Ü., Reich, P. B., Sack, L., Villar, R., Wang, H., & Wilf, P. (2017). Global climatic drivers of leaf size. Science, 357, 917–921. https://doi.org/10.1126/science.aal4760