Risk perception and tolerance shape variation in agricultural use for a transboundary elephant population
Corresponding Author
Nathan R. Hahn
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
Correspondence
Nathan R. Hahn
Email: [email protected]
Search for more papers by this authorJake Wall
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
Mara Elephant Project, Narok, Kenya
Search for more papers by this authorKristen Denninger-Snyder
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
Grumeti Fund, Mugumu-Serengeti, Tanzania
Search for more papers by this authorAnna Bond Estes
Department of Environmental Studies, Carleton College, Northfield, MN, USA
School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
Search for more papers by this authorStephen Ndambuki
Biodiversity Research and Monitoring, Kenya Wildlife Service, Nairobi, Kenya
Search for more papers by this authorEblate Ernest Mjingo
Tanzania Wildlife Research Institute, Arusha, Tanzania
Search for more papers by this authorIain Douglas-Hamiliton
Save the Elephants, Nairobi, Kenya
Department of Zoology, Oxford University, Oxford, UK
Search for more papers by this authorGeorge Wittemyer
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
Save the Elephants, Nairobi, Kenya
Search for more papers by this authorCorresponding Author
Nathan R. Hahn
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
Correspondence
Nathan R. Hahn
Email: [email protected]
Search for more papers by this authorJake Wall
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
Mara Elephant Project, Narok, Kenya
Search for more papers by this authorKristen Denninger-Snyder
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
Grumeti Fund, Mugumu-Serengeti, Tanzania
Search for more papers by this authorAnna Bond Estes
Department of Environmental Studies, Carleton College, Northfield, MN, USA
School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
Search for more papers by this authorStephen Ndambuki
Biodiversity Research and Monitoring, Kenya Wildlife Service, Nairobi, Kenya
Search for more papers by this authorEblate Ernest Mjingo
Tanzania Wildlife Research Institute, Arusha, Tanzania
Search for more papers by this authorIain Douglas-Hamiliton
Save the Elephants, Nairobi, Kenya
Department of Zoology, Oxford University, Oxford, UK
Search for more papers by this authorGeorge Wittemyer
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
Save the Elephants, Nairobi, Kenya
Search for more papers by this authorHandling Editor: Allert Bijleveld
Abstract
- To conserve wide-ranging species in human-modified landscapes, it is essential to understand how animals selectively use or avoid cultivated areas. Use of agriculture leads to human–wildlife conflict, but evidence suggests that individuals may differ in their tendency to be involved in conflict. This is particularly relevant to wild elephant populations.
- We analysed GPS data of 66 free-ranging elephants in the Serengeti-Mara ecosystem to quantify their use of agriculture. We then examined factors influencing the level of agricultural use, individual change in use across years and differences in activity budgets associated with use. Using clustering methods, our data grouped into four agricultural use tactics: rare (<0.6% time in agriculture; 26% of population), sporadic (0.6%–3.8%; 34%), seasonal (3.9%–12.8%; 31%) and habitual (>12.8%; 9%).
- Sporadic and seasonal individuals represented two-thirds (67%) of recorded GPS fixes in agriculture, compared to 32% from habitual individuals. Increased agricultural use was associated with higher daily distance travelled and larger home range size, but not with age or sex. Individual tactic change was prevalent and the habitual tactic was maintained in consecutive years by only five elephants. Across tactics, individuals switched from diurnal to nocturnal activity during agricultural use, interpreted as representing similar risk perception of cultivated areas. Conversely, tactic choice appeared to be associated with differences in risk tolerance between individuals.
- Together, our results suggest that elephants are balancing the costs and benefits of crop usage at both fine (e.g. crop raid events) and long (e.g. yearly tactic change) temporal scales. The high proportion of sporadic and seasonal tactics also highlights the importance of mitigation strategies that address conflict arising from many animals, rather than targeted management of habitual crop raiders.
- Our approach can be applied to other species and systems to characterize individual variation in human resource use and inform mitigations for human–wildlife coexistence.
CONFLICT OF INTEREST
The authors declare they have no conflict of interests.
Open Research
DATA AVAILABILITY STATEMENT
Elephant tracking data will not be archived given their highly sensitive nature and high levels of poaching in the area. Summarized elephant data on agricultural use metrics, space use and tactic cluster results are available in the Dryad Digital Repository https://doi.org/10.5061/dryad.rn8pk0pbn (Hahn et al., 2021). Interested readers can contact the authors directly for inquiries.
Supporting Information
Filename | Description |
---|---|
jane13605-sup-0001-Supinfo.docxWord 2007 document , 10.2 MB | Supplementary Material |
jane13605-sup-0002-TableS2.xlsxapplication/excel, 11.8 KB | Table S2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Bastille-Rousseau, G., Wittemyer, G., Bastille-Rousseau, G., & Wittemyer, G. (2019). Leveraging multidimensional heterogeneity in resource selection to define movement tactics of animals. Ecology Letters, 22, 1417–1427. https://doi.org/10.1111/ele.13327
- Blackwell, B. F., DeVault, T. L., Fernández-Juricic, E., Gese, E. M., Gilbert-Norton, L., & Breck, S. W. (2016). No single solution: Application of behavioural principles in mitigating human–wildlife conflict. Animal Behavior, 120, 245–254. https://doi.org/10.1016/j.anbehav.2016.07.013
- Branco, P. S., Merkle, J. A., Pringle, R. M., Pansu, J., Potter, A. B., Reynolds, A., Stalmans, M., & Long, R. A. (2019). Determinants of elephant foraging behaviour in a coupled human-natural system: Is brown the new green? Journal of Animal Ecology, 88(5), 780–792. https://doi.org/10.1111/1365-2656.12971
- Calenge, C. (2015). Home range estimation in R: The adehabitatHR Package. R vignette 1–60. https://doi.org/10.1111/j.1365-2656.2006.01186.x
- Chiyo, P. I., & Cochrane, E. P. (2005). Population structure and behaviour of crop-raiding elephants in Kibale National Park, Uganda. African Journal of Ecology, 43, 233–241. https://doi.org/10.1111/j.1365-2028.2005.00577.x
- Chiyo, P. I., Lee, P. C., Moss, C. J., Archie, E. A., Hollister-Smith, J. A., & Alberts, S. C. (2011). No risk, no gain: Effects of crop raiding and genetic diversity on body size in male elephants. Behavioral Ecology, 22, 552–558. https://doi.org/10.1093/beheco/arr016
- Denninger-Snyder, K., Mneney, P., Benjamin, B., Mkilindi, P., & Mbise, N. (2019). Seasonal and spatial vulnerability to agricultural damage by elephants in the western Serengeti, Tanzania. Oryx, 55(1), 139–149. https://doi.org/10.1017/S0030605318001382
- Dingemanse, N. J., Kazem, A. J. N., Réale, D., & Wright, J. (2010). Behavioural reaction norms: Animal personality meets individual plasticity. Trends in Ecology & Evolution, 25, 81–89. https://doi.org/10.1016/j.tree.2009.07.013
- Ducros, D., Morellet, N., Patin, R., Atmeh, K., Debeffe, L., Cargnelutti, B., Chaval, Y., Lourtet, B., Coulon, A., & Hewison, A. J. M. (2020). Beyond dispersal versus philopatry? Alternative behavioural tactics of juvenile roe deer in a heterogeneous landscape. Oikos, 129, 81–92. https://doi.org/10.1111/oik.06793
- Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. E. (2007). The shuttle radar topography mission. Reviews of Geophysics. https://doi.org/10.1029/2005RG000183
- Gaynor, K. M., Branco, P. S., Long, R. A., Gonçalves, D. D., Granli, P. K., & Poole, J. H. (2018). Effects of human settlement and roads on diel activity patterns of elephants (Loxodonta africana). African Journal of Ecology, 56, 872–881. https://doi.org/10.1111/aje.12552
- Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E., & Brashares, J. S. (2019). Landscapes of fear: Spatial patterns of risk perception and response. Trends in Ecology & Evolution, 34, 355–368. https://doi.org/10.1016/j.tree.2019.01.004
- Hahn, N., Wall, J., Denninger-Snyder, K., Goss, M., Sairowua, W., Mbise, N., Estes, A. B., Ndambuki, S., Mjingo, E. E., Douglas-Hamilton, I., & Wittemyer, G. (2021). Data from: Risk perception and tolerance shape variation in agricultural use for a transboundary elephant population. Dryad Digital Repository, https://doi.org/10.5061/dryad.rn8pk0pbn
- Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science. https://doi.org/10.1126/science.1244693
- Hertel, A. G., Leclerc, M., Warren, D., Pelletier, F., Zedrosser, A., & Mueller, T. (2019). Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Animal Behavior, 147, 91–104. https://doi.org/10.1016/J.ANBEHAV.2018.11.008
- Hoare, R. E. (2001). Management implications of new research on problem elephants. Pachyderm, 30, 44–48.
- Hoare, R. (2015). Lessons from 20 years of human–elephant conflict mitigation in Africa. Human Dimensions of Wildlife, 20, 289–295. https://doi.org/10.1080/10871209.2015.1005855
- Ihwagi, F. W., Thouless, C., Wang, T., Skidmore, A. K., Omondi, P., & Douglas-Hamilton, I. (2018). Night-day speed ratio of elephants as indicator of poaching levels. Ecological Indicators, 84, 38–44. https://doi.org/10.1016/j.ecolind.2017.08.039
- Johnson, H. E., Breck, S. W., Baruch-Mordo, S., Lewis, D. L., Lackey, C. W., Wilson, K. R., Broderick, J., Mao, J. S., & Beckmann, J. P. (2015). Shifting perceptions of risk and reward: Dynamic selection for human development by black bears in the western United States. Biological Conservation, 187, 164–172. https://doi.org/10.1016/j.biocon.2015.04.014
- Kennedy, C. M., Oakleaf, J. R., Theobald, D. D. M., Baruch-Mordo, S., & Kiesecker, J. J. (2019). Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology. https://doi.org/10.1111/gcb.14549
- Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D., & Morales, J. M. (2012). Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions. Ecology, 93, 2336–2342. https://doi.org/10.1890/11-2241.1
- Leclerc, M., Vander Wal, E., Zedrosser, A., Swenson, J. E., Kindberg, J., & Pelletier, F. (2016). Quantifying consistent individual differences in habitat selection. Oecologia, 180, 697–705. https://doi.org/10.1007/s00442-015-3500-6
- Linnell, J. D. C., Odden, J., Smith, M. E., Aanes, R., Swenson, J. E., Ronn, A., & Swen, J. E. (2008). Carnivores and Predation Large carnivores that kill livestock: Do ‘problem individuals’ really exist? Society, 27, 698–705.
- McClintock, B. T., & Michelot, T. (2018). momentuHMM: R package for analysis of telemetry data using generalized multivariate hidden Markov models of animal movement (pp. 1–69). https://doi.org/10.1111/2041-210X.12995
- McClintock, B. T., Russell, D. J. F., Matthiopoulos, J., & King, R. (2013). Combining individual animal movement and ancillary biotelemetry data to investigate population-level activity budgets. Ecology, 94, 838–849. https://doi.org/10.1890/12-0954.1
- Mduma, H., Musyoki, C., Maliti, K. D., Nindi, S., Hamza, K., Ndetei, R., Machoke, M., Kimutai, D., Muteti, D., Maloba, M., Bakari, S., & Kohi, E. (2014). Aerial total count of elephants and buffaloes in the Serengeti-Mara ecosystem. World Wide Fund For Nature.
- Moody, A. L., Houston, A. I., & Mcnamara, J. M. (1996). Ideal free distributions under predation risk. Behavioral Ecology and Sociobiology, 131–143. https://doi.org/10.1007/s002650050225
- Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., & Fryxell, J. M. (2004). Extracting more out of relocation data: Building movements models as mixtures of random walks. Ecology, 85, 2436–2445. https://doi.org/10.1890/03-0269
- Moss, C. J. (2001). The demography of an African elephant (Loxodonta africana) population in Amboseli, Kenya. Journal of Zoology, 255(2), 145–156. https://doi.org/10.1017/S0952836901001212
- Mukeka, J. M., Ogutu, J. O., Kanga, E., & Røskaft, E. (2019). Human-wildlife conflicts and their correlates in Narok County, Kenya. Global Ecology and Conservation, 18, e00620. https://doi.org/10.1016/j.gecco.2019.e00620
- Mumby, H. S., & Plotnik, J. M. (2018). Taking the elephants’ perspective: Remembering elephant behavior, cognition and ecology in human-elephant conflict mitigation. Frontiers in Ecology and Evolution, 6, 122. https://doi.org/10.3389/fevo.2018.00122
- Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., & Smouse, P. E. (2008). A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the United States of America, 105, 19052–19059. https://doi.org/10.1073/PNAS.0800375105
- Ogutu, J. O., Piepho, H. P., Dublin, H. T., Bhola, N., & Reid, R. S. (2009). Dynamics of Mara-Serengeti ungulates in relation to land use changes. Journal of Zoology, 278, 1–14. https://doi.org/10.1111/j.1469-7998.2008.00536.x
- Patterson, T. A., Basson, M., Bravington, M. V., & Gunn, J. S. (2009). Classifying movement behaviour in relation to environmental conditions using hidden Markov models. Journal of Animal Ecology, 78, 1113–1123. https://doi.org/10.1111/j.1365-2656.2009.01583.x
- Polansky, L., Kilian, W., & Wittemyer, G. (2015). Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models. Proceedings of the Royal Society B: Biological Sciences, 282, 20143042. https://doi.org/10.1098/rspb.2014.3042
- R Development Core Team. (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7
- Ridout, M. S., & Linkie, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14, 322–337. https://doi.org/10.1198/jabes.2009.08038
- Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., Hayward, M. W., Kerley, G. I. H. H., Levi, T., Lindsey, P. A., Macdonald, D. W., Malhi, Y., Painter, L. E., Sandom, C. J., Terborgh, J., & Van Valkenburgh, B. (2015). Collapse of the world's largest herbivores. Science Advances, 1, e1400103. https://doi.org/10.1126/sciadv.1400103
- Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). Mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal. https://doi.org/10.32614/rj-2016-021
- Sih, A., Ferrari, M. C. O., & Harris, D. J. (2011). Evolution and behavioural responses to human-induced rapid environmental change. Evolutionary Applications, 4, 367–387. https://doi.org/10.1111/j.1752-4571.2010.00166.x
- Smit, J., Pozo, R. A., Cusack, J. J., Nowak, K., & Jones, T. (2019). Using camera traps to study the age-sex structure and behaviour of crop-using elephants Loxodonta africana in Udzungwa Mountains National Park, Tanzania. Oryx, 53, 368–376. https://doi.org/10.1017/S0030605317000345
- Songhurst, A., McCulloch, G., & Coulson, T. (2016). Finding pathways to human-elephant coexistence: A risky business. Oryx, 50, 713–720. https://doi.org/10.1017/S0030605315000344
- Spiegel, O., Leu, S. T., Bull, C. M., & Sih, A. (2017). What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecology Letters, 20, 3–18. https://doi.org/10.1111/ele.12708
- Stillfried, M., Gras, P., Börner, K., Göritz, F., Painer, J., Röllig, K., Wenzler, M., Hofer, H., Ortmann, S., & Kramer-Schadt, S. (2017). Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Frontiers in Ecology and Evolution, 5, 1–12. https://doi.org/10.3389/fevo.2017.00157
- Tanzania Wildlife Conservation Monitoring Programme & Frankfurt Zoological Society. (1996). Rivers and small drainages from Greater Serengeti-Mara Ecosystem. Arusha.
- Tiller, L. N., Humle, T., Amin, R., Deere, N. J., Lago, B. O., Leader-Williams, N., Sinoni, F. K., Sitati, N., Walpole, M., & Smith, R. J. (2021). Changing seasonal, temporal and spatial crop-raiding trends over 15 years in a human-elephant conflict hotspot. Biological Conservation, 254. https://doi.org/10.1016/j.biocon.2020.108941
- Troup, G., Doran, B., Au, J., King, L. E., Douglas-Hamilton, I., & Heinsohn, R. (2020). Movement tortuosity and speed reveal the trade-offs of crop raiding for African elephants. Animal Behavior, 168, 97–108. https://doi.org/10.1016/j.anbehav.2020.08.009
- Tucker, M. A., Böhning-Gaese, K., Fagan, W. F., Fryxell, J. M., Van Moorter, B., Alberts, S. C., Ali, A. H., Allen, A. M., Attias, N., Avgar, T., Bartlam-Brooks, H., Bayarbaatar, B., Belant, J. L., Bertassoni, A., Beyer, D., Bidner, L., van Beest, F. M., Blake, S., Blaum, N., … Mueller, T. (2018). Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 359, 466–469. https://doi.org/10.1126/science.aam9712
- Tyrrell, P., Betjes, K., Broekhuis, F., Buitenwerf, R., Carroll, C., Hahn, N., Haywood, D., Klaassen, B., Lovschal, M., Macdonald, D., Maiyo, C., Mbithi, H., Mwangi, N., Ochola, C., Ondire, E., Ondrusek, V., Ratemo, J., Pope, F., Sairowua, W., … Wall, J. (in press). Landscape Dynamics (landDX) database: An integrated open-access spatial-temporal database for conservation and rangeland management in the Kenya-Tanzania borderlands. Natural Science Data, 1–18.
- Veldhuis, M. P., Ritchie, M. E., Ogutu, J. O., Morrison, T. A., Beale, C. M., Estes, A. B., Mwakilema, W., Ojwang, G. O., Parr, C. L., Probert, J., Wargute, P. W., Grant Hopcraft, J. C., & Olff, H. (2019). Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science, 363, 1424–1428. https://doi.org/10.1126/science.aav0564
- Vogel, S. M., Lambert, B., Songhurst, A. C., McCulloch, G. P., Stronza, A. L., & Coulson, T. (2020). Exploring movement decisions: Can Bayesian movement-state models explain crop consumption behaviour in elephants (Loxodonta africana)? Journal of Animal Ecology, 1055–1068. https://doi.org/10.1111/1365-2656.13177
- Wall, J., Wittemyer, G., Klinkenberg, B., LeMay, V., Blake, S., Strindberg, S., Henley, M., Vollrath, F., Maisels, F., Ferwerda, J., & Douglas-Hamilton, I. (2021). Human footprint and protected areas shape elephant range across Africa. Current Biology, 31(11), 2437–2445.e4. https://doi.org/10.1016/j.cub.2021.03.042
- Wittemyer, G., Northrup, J. M., & Bastille-Rousseau, G. (2019). Behavioural valuation of landscapes using movement data. Philosophical Transactions of the Royal Society B: Biological Sciences, 374. https://doi.org/10.1098/rstb.2018.0046
- Woodroffe, R., Thirgood, S., & Rabinowitz, A. (2005). People and wildlife, conflict or co-existance?. Cambridge University Press. https://doi.org/10.1017/CBO9780511614774