ctmm: an r package for analyzing animal relocation data as a continuous‐time stochastic process
Summary
- Movement ecology has developed rapidly over the past decade, driven by advances in tracking technology that have largely removed data limitations. Development of rigorous analytical tools has lagged behind empirical progress, and as a result, relocation data sets have been underutilized.
- Discrete‐time correlated random walk models (CRW) have long served as the foundation for analyzing relocation data. Unfortunately, CRWs confound the sampling and movement processes. CRW parameter estimates thus depend sensitively on the sampling schedule, which makes it difficult to draw sampling‐independent inferences about the underlying movement process. Furthermore, CRWs cannot accommodate the multiscale autocorrelations that typify modern, finely sampled relocation data sets.
- Recent developments in modelling movement as a continuous‐time stochastic process (CTSP) solve these problems, but the mathematical difficulty of using CTSPs has limited their adoption in ecology. To remove this roadblock, we introduce the ctmm package for the R statistical computing environment. ctmm implements all of the CTSPs currently in use in the ecological literature and couples them with powerful statistical methods for autocorrelated data adapted from geostatistics and signal processing, including variograms, periodograms and non‐Markovian maximum likelihood estimation.
- ctmm is built around a standard workflow that begins with visual diagnostics, proceeds to candidate model identification, and then to maximum likelihood fitting and AIC‐based model selection. Once an accurate CTSP for the data has been fitted and selected, analyses that require such a model, such as quantifying home range areas via autocorrelated kernel density estimation or estimating occurrence distributions via time‐series Kriging, can then be performed.
- We use a case study with African buffalo to demonstrate the capabilities of ctmm and highlight the steps of a typical CTSP movement analysis workflow.
Introduction
An understanding of animal movement can inform a wide range of biological topics including population and community ecology, animal physiology, disease spread, gene flow, and wildlife management and conservation (Nathan et al. 2008; Kays et al. 2015). Historically, a lack of movement data limited progress, but technological advances have fuelled an explosion of tracking studies (Kays et al. 2015), with the Movebank.org repository alone now featuring 1300+ data sets on 400+ species (Wikelski & Kays 2015). Now, the key bottleneck is the dearth of accurate and reliable analytical tools for extracting information from these accumulating data sources.
The discrete‐time correlated random walk (CRW; Kareiva & Shigesada 1983; Turchin 1998; Codling, Plank & Benhamou 2008) and its extensions (Morales et al. 2004; Jonsen, Flemming & Myers 2005; McClintock et al. 2012) have long been the standard approach to modelling movement data. However, the CRW confounds the sampling and movement processes and thus yields different results even when the exact same movement path is sampled at different resolutions (Bovet & Benhamou 1988; Codling & Hill 2005; Nams 2013; Fleming et al. 2014a). In other words, inferences based on the CRW frequently reflect more about the sampling schedule than about the underlying movement process. Secondly, real movement data often feature rich, multiscale autocorrelation structure (Boyce et al. 2010; Dray, Royer‐Carenzi & Calenge 2010; Fleming et al. 2014a,b). The CRW, which is a first‐order Markov chain model, cannot accommodate multiscale autocorrelations and therefore returns biased results when fitted to such data. Extending the CRW paradigm to higher‐order (e.g. 2nd or 3rd order) discrete‐time Markov processes is not sufficient because the autocorrelation time scales in the data can span orders of magnitude and can be completely unrelated to the data sampling interval (Fleming et al. 2014a,b).
Continuous‐time stochastic process (CTSP) models solve these problems by separating the continuous‐time movement process from the discrete‐time sampling process (Blackwell 1997, 2003; Johnson et al. 2008; Gurarie & Ovaskainen 2011; Fleming et al. 2014a,b), which also renders CTSPs robust to irregular sampling. CTSPs span a range from no autocorrelation, through Markovian (position) autocorrelation, to multiscale non‐Markovian autocorrelation (position and velocity autocorrelation, etc.), and thus can account for whatever autocorrelations are in the data (Fleming, Subaşı & Calabrese 2015b). Adoption of CTSP models has, unfortunately, been hindered by a lack of statistical methods and comprehensive software. Though several highly specialized software packages implementing particular CTSP models exist (Appendix S1, Supporting information), none of these provides a general environment for working with CTSPs. The continuous‐time movement modelling (ctmm) package for the R environment for statistical computing (R Core Team, 2015) fills this gap. ctmm integrates a broad range of CTSPs with statistical methods for autocorrelated data such as variogram (Fleming et al. 2014a) and periodogram analyses (Péron et al. In Review), and non‐Markovian maximum likelihood estimation (Fleming et al. 2014b). ctmm facilitates detailed analyses of movement data including: (i) visual diagnostics for CTSPs, (ii) fitting CTSPs via maximum likelihood, (iii) AIC‐based model selection and (iv) analyses that require a fitted, selected CTSP. Currently, this latter category includes home range estimation via autocorrelated kernel density estimation (AKDE; Fleming et al. 2015) and occurrence distribution estimation via time‐series Kriging (Fleming et al. 2016).
Models
Relocation data feature observations that are ordered in time. Consequently, position observations that are closer together in time will tend to be more similar than those farther apart in time. Relocation data sets therefore frequently feature autocorrelated positions. For finely sampled data sets, directional persistence in motion is often observable. Directional persistence is a consequence of autocorrelated velocities, which means that an individual's direction and speed at one point in time tend to be correlated with those quantities at adjacent times. Finally, at larger scales, most animals will exhibit a tendency to remain in a defined region or ‘home range’. These three features, position autocorrelation, velocity autocorrelation and range residency, can be used to classify CTSP models (Table 1). ctmm includes all single‐component CTSP models currently in use in the ecological literature (Table 1).
| Movement Model | Pos. AC | Vel. AC | H. Range | Parameterization |
|---|---|---|---|---|
| Ind. Ident. Distr. (IID) | No | No | Yes | τ = NULL |
| Brownian Motion (BM) | Yes | No | No | τ = ∞ |
| Ornstein–Uhlenbeck (OU) | Yes | No | Yes | τ = τr |
| Integrated OU (IOU) | Yes | Yes | No | τ = {∞, τv} |
| Ornstein‐Uhlenbeck F (OUF) | Yes | Yes | Yes | τ = {τr, τv} |
The independent identically distributed (IID) process assumes uncorrelated positions and velocities and is thus not typically recognized as a movement model. However, the IID assumption is implicit when performing conventional home range estimation (e.g. KDE). Brownian motion (BM) is a standard model of regular diffusion, where velocities are uncorrelated and space use is not limited (Einstein 1905; Horne et al. 2007). BM can be appropriate for data that are sampled both too coarsely to reveal velocity autocorrelation, and too briefly to show range residency. BM is not appropriate for use as a home range model as it is, by design, an endlessly diffusing process (Fleming et al. 2015). The Ornstein–Uhlenbeck (OU) process combines BM with a tendency to remain in a particular area (Uhlenbeck & Ornstein 1930; Dunn & Gipson 1977). The OU process is therefore appropriate for data that lack evidence of directional persistence, but where restricted space use is apparent. The integrated OU (IOU) process diffuses endlessly like BM, but unlike BM, features autocorrelated velocities at short time scales (Johnson et al. 2008; Gurarie & Ovaskainen, 2011). IOU is therefore appropriate for finely sampled data sets that show directional persistence, but where sampling duration was too brief to identify range residency. Finally, the recently introduced Ornstein–Uhlenbeck Foraging (OUF) process is a hybrid of the OU and IOU processes that features both correlated velocities and restricted space use (Fleming et al. 2014a,b). The OUF process will be appropriate for many modern data sets where sampling is both fine enough to reveal velocity autocorrelation and long enough to show range residency.
Workflow
ctmm is designed around a particular workflow. Firstly, scatter plots of the relocation data should be made to identify problems in the data and coarse aspects of the movement. Next, empirical variograms and periodograms should be plotted to reveal more features of the movement behaviour and judge the appropriateness of the different models for the data. Suitable models thus identified can then be fit to the data via maximum likelihood and compared via AIC. Selecting an AIC‐best model then facilitates subsequent analyses that condition on an appropriate movement model. Specifically, ctmm 0.3.0 supports autocorrelated kernel density estimation of home ranges as well as estimation of occurrence distributions and trajectories via time‐series Kriging. The core functions of ctmm are summarized in Table 2.
| Function | Description |
|---|---|
| as.telemetry | Coerces dataframes that follow the Movebank.org format to telemetry objects. Also coerces move objects created by the move package to telemetry objects. Data passed to as.telemetry must contain at least the following columns: individual.local.identifier, timestamp, location.long, and location.lat. |
| plot | When passed a telemetry object, produces simple plots of location data and can optionally overlay a Gaussian ctmm or akde object. When passed a variogram object, plots the empirical variogram, optionally overlaying the SVF from a fitted ctmm model. When passed a periodogram object, plots the empirical periodogram. |
| variogram | Calculates the empirical variogram for a telemetry object. |
| variogram.fit | Allows visually fitting model SVFs to an empirical variogram via interactive parameter sliders. This approach produces initial parameter guesses for ctmm's model fitting functions. |
| These guesses can be saved to a variable by clicking the button on the slider palette, and that variable can then be passed to ctmm.fit or ctmm.select. | |
| periodogram | Calculates the Lomb–Scargle periodogram for a telemetry object. |
| ctmm | Creates a ctmm object defining a CTSP model based on the user‐specified parameter vector. |
| ctmm.fit | Performs maximum likelihood parameter and interval estimation of ctmm models using each model's exact likelihood function. Accepts a ctmm object with parameter guesses (e.g. as generated by variogram.fit). |
| ctmm.select | A wrapper for ctmm.fit that automatically fits the range‐resident models (IID, OU and OUF) and ranks them via AICc. Accepts a ctmm object with parameter guesses (e.g. as generated by variogram.fit). |
| akde | Estimates the range distribution for autocorrelated telemetry data via autocorrelated kernel density estimation. Requires both a telemetry object and a fitted, selected model as input. |
| occurrence | Estimates the occurrence distribution for autocorrelated telemetry data via Kriging. Requires both a telemetry object and a fitted, selected model as input. |
| summary | When passed a telemetry object, gives an overview of the data including sampling interval and sampling duration. When passed a ctmm.fit object, gives point estimates and 95% confidence intervals for model parameters. When passed an akde object, displays the estimated 95% home range area, with 95% confidence intervals on the area estimate. |
Data import and basic plotting
ctmm defines a telemetry object for representing movement data and a geographical projection associated with the data. Data imported into ctmm must conform to a minimal version of the Movebank data format, which is a tabular format with observations on the rows and at least the columns indicated in Table 2. Data files downloaded directly from Movebank will have the correct format, but users can also manually create appropriately formatted data files. Additionally, as.telemetry can import move objects from the move r package (Kranstauber & Smolla 2015). ctmm users can therefore leverage the move package's well‐developed functionality for interacting with Movebank programmatically. Once represented as a telemetry object, data can be easily visualized using plot, which we highly recommend to identify outliers, obvious migration events and other coarse features of the data.
Visual diagnostics for CTSPs
Empirical variograms, which are plots of the semi‐variance in positions as a function of the time lag separating observations (Cressie 1993; Diggle & Ribeiro 2007), provide an unbiased means of visualizing the autocorrelation structure of a relocation data set (Fleming et al. 2014a). A variogram can be calculated in ctmm via the variogram function and plotted with confidence intervals via plot. The behaviour of the variogram near the origin, its shape for intermediate lags and its long‐lag behaviour can help diagnose problems of model fit (Fleming et al. 2014a). We describe each of these features in turn.
Firstly, a linear increase in semi‐variance from zero for short lags indicates uncorrelated velocities and suggests models such as BM or OU. Upward curvature at short lags indicates velocity autocorrelation and suggests models such as the IOU or OUF processes. When location error is large enough to be a concern, the semi‐variance will approach some constant greater than zero as lag goes to zero. This so‐called nugget effect also provides a crude estimate of the error magnitude. Secondly, the variogram will typically increase linearly over some range of intermediate lags, indicating autocorrelated positions consistent with most diffusion models including BM, OU, IOU and OUF (but not IID). Finally, the long‐lag behaviour of the variogram contains information about space use. A range‐resident species should have a variogram that eventually reaches an asymptote, which is proportional to home range size. If the variogram does not approach an asymptote with increasing lag, the data would not be appropriate for a home range analysis of any kind. For a range‐resident animal, this usually means that the individual was not tracked long enough to reveal its home range extent, but it can also be a consequence of the individual migrating or shifting its range.
The semi‐variance function (SVF) is the theoretical analogue of the variogram (Fig. 1). ctmm implements SVFs for the supported models and allows the user to get rough initial parameter guesses by visually matching a theoretical SVF to an empirical variogram. For rstudio users, the function variogram.fit provides interactive sliders that manipulate parameter values and display the corresponding SVF against the variogram (Fig. 2). The SVF of a good movement model for the data should simultaneously match the short‐, intermediate‐, and long‐lag features of the variogram.


Likelihood‐based parameter estimation and model selection
After identifying reasonable candidate models, the next analysis step is fitting the models via maximum likelihood (Fleming et al. 2014b). ctmm includes the exact likelihood functions for all models in Table 1. The ctmm.fit function takes a telemetry object and a model specification as input and computes the maximum likelihood parameter and interval estimates. The ctmm function defines a CTSP model via its parameter vector as described in Table 1. The initial guesses obtained by using variogram.fit can be given as starting values in ctmm.fit either by clicking the save to GUESS button on the slider palette, or by using the ctmm function (see Appendix S3, Supporting information). Alternatively, if there is evidence of range residence in the variogram, one can automatically fit and rank (via AICc) both isotropic and anisotropic versions of the three models with home ranges with the ctmm.select function. The objects returned by ctmm.fit and ctmm.select contain a range of fit‐related quantities including point estimates, confidence intervals and AICc. Finally, fitted models can be compared to the data via plot.
Quantifying home range area via autocorrelated kernel density estimation
Understanding the amount and type(s) of habitat animals require to survive is essential both for effective conservation planning and for basic ecological understanding. Home range estimation is, consequently, one of the key uses of relocation data. However, recent work has shown that conventional home range estimation methods will systematically, and sometimes grossly, underestimate home range areas for autocorrelated relocation data (Fleming et al. 2014a,b, 2015). Underestimation occurs because a given number of IID observations contain far more information about the home range than an equivalent number of highly autocorrelated observations (Fleming et al. 2015). Home range estimation procedures that assume IID data will therefore overestimate the amount of information the data actually contain, which typically results in an underestimated home range area. In contrast, the recently introduced AKDE estimator (Fleming et al. 2015) produces a more accurate estimate by appropriately discounting the information content of autocorrelated data.
The essential task in AKDE, which ctmm automates, is calculating the appropriate smoothing bandwidth given the data and a previously fitted and selected movement model. This means that the above‐described steps to select a good model for the focal data set are required prior to an AKDE analysis. Furthermore, both the data and selected model must feature a home range (see Table 1). If there is no evidence of constrained space use in the data (i.e. no asymptote in the variogram), then a home range analysis of any kind is not appropriate. The akde function takes both a telemetry object and a ctmm object as input and returns an akde object. plot can then be used to show the akde estimate, the 95% home range contour and the 95% confidence intervals around this contour, while summary gives the 95% home range area point estimate and corresponding 95% confidence intervals. Different home range percentages or different confidence interval limits can be optionally specified.
Case study
We demonstrate the capabilities of ctmm on an example with African buffalo (Syncerus caffer) tracked in Kruger National Park, South Africa (Getz et al. 2007; Cross et al. 2009). The African buffalo data set consists of hourly GPS position locations for six individuals over a periods ranging from 2·5 to 8 months. Some individuals feature many missing observations.
A complete analysis
We now walk through the main analysis steps with a single individual, Cilla, from the buffalo data. Cilla was tracked for 147 days between July and December 2005, yielding 3528 location fixes with no missing observations. We begin by loading the package and then extracting and plotting the data for Cilla. All analyses were performed using R version 3.2.3 (R Core Team, 2015), RStudio version 0.99.489 (RStudio Team, 2016) and ctmm version 0.3.0 (Fleming & Calabrese 2015).
-
#Load package
-
library (ctmm)
-
#Load example buffalo data
-
data("buffalo")
-
#Extract data for buffalo 1, Cilla
-
cilla<- buffalo[[1]]
-
#Plot the positions
-
plot(cilla)
Figure 3 suggests that Cilla is range resident with no obvious migrations. We then calculate and plot Cilla's variogram:
-
#Calculate variogram
-
vg.cilla <- variogram(cilla)
-
#Plot up to 50% of the maximum lag in the data
-
plot(vg.cilla)
-
#Zoom in on the shortest lags
-
plot(vg.cilla, fraction=0.005)

The asymptote of the variogram at longer lags (Fig. 4a) suggests that Cilla is indeed range resident, while the slight upward curvature at short lags (Fig. 4b) provides evidence of directional persistence in the data. We therefore consider the IID, OU and OUF models (Table 1) as reasonable candidates for the data. All three models feature a home range, while the OU process also has autocorrelated positions and the OUF process has both position and velocity autocorrelation. We then use variogram.fit to get starting values for model parameters:
-
#Use the sliders provided by variogram.fit to specify starting values.
-
#The default choices are usually acceptable.
-
variogram.fit(vg.cilla)

Once reasonable parameter values have been found by manipulating the sliders provided by variogram.fit, the save button allows the user to save the parameter values to a variable named GUESS. This variable can be passed to either ctmm.fit or ctmm.select, which will then refine the initial guesses via maximum likelihood estimation:
-
#Automatically fit the range-resident models via maximum likelihood
-
#using the initial parameter values obtained from variogram.fit()
-
fitted.mods <- ctmm.select(cilla, CTMM=GUESS, verbose=TRUE)
After fitting, we examine the model selection results:
| summary(fitted.mods) | |
| dAICc | |
| OUF anisotropic | 0·0000 |
| OUF isotropic | 113·9392 |
| OU anisotropic | 1458·2961 |
| OU isotropic | 1643·9289 |
| IID anisotropic | 36617·4880 |
| IID isotropic | 37197·1365 |
Overall, we see that the anisotropic version of OUF is the clear winner. As the anisotropic version of each model was favoured over its isotropic counterpart, we visually examine the fits of the anisotropic versions of IID, OU and OUF.
-
#Extract the fitted anisotropic version of IID, OU, and OUF.
-
iid <- fitted.mods [[5]]
-
ou <- fitted.mods [[3]]
-
ouf <- fitted.mods [[1]]
The SVFs of the fitted models can then be plotted against the empirical variogram to visually check the model selection results. Here, we only show the code for the first model, as the code for the others is similar:
-
plot(vg.cilla, CTMM=iid, col.CTMM="#1b9e77")
-
plot(vg.cilla, CTMM=iid, col.CTMM="#1b9e77", fraction=0.005)
The results are shown in Fig. 5. It is clear from visual inspection that the OUF model is far superior to the others because it accounts for the three main features in the data: restricted space use, autocorrelated positions and autocorrelated velocities. The fit of the OU model is severely biased because it cannot account for the velocity autocorrelation apparent at short lags. While the upward curvature of the variograms for short lags appears visually subtle, this feature is statistically very important and thus has a strong effect on how models fit the data (Fleming et al. 2014a). Next, we inspect the parameter and interval estimates for the three models.

| summary(iid) | |||
| low | ML | high | |
| area (square kilometers) | 360·5731 | 369·1364 | 377·7989 |
| summary(ou) | |||
| low | ML | high | |
| area (square kilometers) | 206·178715 | 397·23732 | 649·89803 |
| tau position (days) | 5·669666 | 12·98879 | 29·75639 |
| summary(ouf) | |||
| low | ML | high | |
| area (square kilometers) | 280·312770 | 439·330756 | 633·50335 |
| tau position (days) | 3·512759 | 5·930834 | 10·01344 |
| tau velocity (minutes) | 43·749371 | 46·734973 | 49·92432 |
| speed (kilometers/day) | 10·922975 | 11·105522 | 11·29112 |
We conclude that the OUF model is the best for Cilla due to both the overwhelming AIC difference in its favour and its ability to accommodate all of the main features of the variogram.
We can now condition on the selected OUF model to obtain accurate home range estimates via autocorrelated kernel density estimation (Fleming et al. 2015). We also calculate the conventional (uncorrelated) KDE on the same data for reference. The akde function calculates the appropriate smoothing bandwidth given the data and a model describing the autocorrelations in the data. The AKDE reduces to the conventional reference function KDE when an uncorrelated model is given as input. Thus, the conventional KDE is obtained by passing the data and fitted IID model to the akde function.
-
#Conventional KDE estimate
-
kde.cilla <- akde(cilla, CTMM=iid)
The autocorrelated home estimate is then obtained by passing akde the selected OUF model
-
#Autocorrelated KDE estimate
-
akde.cilla <- akde(cilla,CTMM=ouf)
Comparing the uncorrelated and autocorrelated estimates
| summary(kde.cilla) | |||
| low | ML | high | |
| area (square kilometers) | 284·0115 | 285·3876 | 286·7635 |
| summary(akde.cilla) | |||
| low | ML | high | |
| area (square kilometers) | 380·1221 | 493·3808 | 628·2644 |
we see that the AKDE predicts substantial additional space use relative to the conventional KDE. This is consistent with recent results proving that, in general, home range estimates that ignore autocorrelation in the data will be too small (Fleming et al. 2014a,b, 2015). Finally, plot can be used to visualize the home range density estimates against the position data:
-
plot(cilla, UD=kde.cilla)
-
plot(cilla, UD=akde.cilla)
In addition to the appropriately larger home range estimate, the AKDE also provides a more honest accounting of uncertainty, as evidenced by the width of the confidence intervals around the 95% contour (cf. Fig. 6a, b). The corresponding intervals for the KDE are much narrower, which gives the false impression that the conventional estimate is more precise. For a given sample size, however, uncorrelated data provide more information than autocorrelated data. The conventional KDE, which assumes independent data, will thus yield confidence intervals that are far too narrow when input data are autocorrelated. The AKDE, in contrast, gives realistic confidence intervals even for very strongly autocorrelated data. However, these results will only be as good as the model used to describe autocorrelation in the data, which underlines the importance of visual diagnostics and model selection.

The supplementary material provides further examples of ctmm's capabilities. Appendix S2 (Supporting information) shows an example with both apparently periodic movement and many missing observations. Appendix S3 (Supporting information) highlights the BM and IOU models for cases where evidence of range residency is lacking. Appendix S4 (Supporting information) demonstrates the estimation of occurrence distributions via time‐series Kriging. Finally, Appendix D in Fleming et al. (2016) gives examples of importing move objects and incorporating location errors in ctmm.
Discussion
Recently, movement ecology has reached a point where rapid advances in tracking technology have begun to expose the weaknesses of existing analytical frameworks. Continuous‐time stochastic process models, which overcome many of the limitations suffered by their discrete‐time counterparts, provide a robust foundation for the future of movement ecology. However, mainstream adoption of these next‐generation tools has been hampered by the level of mathematical expertise required to use them by hand. The ctmm package for R helps to solve this problem by coupling user‐friendly implementations of all major CTSPs movement models with a suite of powerful statistical tools for autocorrelated data adapted from geostatistics and signal processing.
ctmm is built around a standard workflow that progresses from exploratory visual diagnostics, to candidate model identification, to formal model fitting and selection, and finishes with estimating home ranges and occurrence distributions. The tools currently in ctmm allow a very thorough analysis of movement data. However, ctmm will continue to grow as new CTSP‐based techniques and new models enter the literature. For example, our research group is currently developing methods to quantify correlated movements among multiple simultaneously tracked individuals (Calabrese et al. In Review), and to detect range shifts and migrations in individual relocation data (Gurarie et al. In Review). These and other new techniques will allow future versions of ctmm to extract even more biological detail from movement data and will open a broader range of relocation data sets to analysis with CTSP‐based tools.
Acknowledgements
This work was supported by the US NSF Advances in Biological Informatics Program (Grants ABI‐1062411 to T. Mueller and ABI‐1458748 to J.M. Calabrese), and CHF was supported by a Smithsonian Institution Postdoctoral Fellowship. We thank Paul Cross for providing the African buffalo data. The buffalo data collection was supported by the US NSF and NIH Ecology of Infectious Disease Program (DEB‐0090323 to W.M. Getz).
Data accessibility
The African buffalo data used in this paper can be accessed on Movebank.org as ‘Study‐Kruger African Buffalo, GPS Tracking, South Africa (Movebank ID 1764627).
References
Citing Literature
Number of times cited according to CrossRef: 81
- Miriam Lerma, Juan Serratosa, Guillermo Luna-Jorquera, Stefan Garthe, Foraging ecology of masked boobies (Sula dactylatra) in the world’s largest “oceanic desert”, Marine Biology, 10.1007/s00227-020-03700-2, 167, 6, (2020).
- M. Wing Goodale, Anita Milman, Assessing Cumulative Exposure of Northern Gannets to Offshore Wind Farms, Wildlife Society Bulletin, 10.1002/wsb.1087, 44, 2, (252-259), (2020).
- Ulrike E. Schlägel, Volker Grimm, Niels Blaum, Pierluigi Colangeli, Melanie Dammhahn, Jana A. Eccard, Sebastian L. Hausmann, Antje Herde, Heribert Hofer, Jasmin Joshi, Stephanie Kramer‐Schadt, Magdalena Litwin, Sissi D. Lozada‐Gobilard, Marina E. H. Müller, Thomas Müller, Ran Nathan, Jana S. Petermann, Karin Pirhofer‐Walzl, Viktoriia Radchuk, Matthias C. Rillig, Manuel Roeleke, Merlin Schäfer, Cédric Scherer, Gabriele Schiro, Carolin Scholz, Lisa Teckentrup, Ralph Tiedemann, Wiebke Ullmann, Christian C. Voigt, Guntram Weithoff, Florian Jeltsch, Movement‐mediated community assembly and coexistence, Biological Reviews, 10.1111/brv.12600, 95, 4, (1073-1096), (2020).
- Vincent N. Naude, Guy A. Balme, Justin O'Riain, Luke T.B. Hunter, Julien Fattebert, Tristan Dickerson, Jacqueline M. Bishop, Unsustainable anthropogenic mortality disrupts natal dispersal and promotes inbreeding in leopards, Ecology and Evolution, 10.1002/ece3.6089, 10, 8, (3605-3619), (2020).
- Catherine M. McNicol, David Bavin, Stuart Bearhop, Mark Ferryman, Robin Gill, Cecily E. D. Goodwin, Jenny MacPherson, Matthew J. Silk, Robbie A. McDonald, Translocated native pine martens Martes martes alter short‐term space use by invasive non‐native grey squirrels Sciurus carolinensis, Journal of Applied Ecology, 10.1111/1365-2664.13598, 57, 5, (903-913), (2020).
- Sharon A. Poessel, Brian D. Uher-Koch, John M. Pearce, Joel A. Schmutz, Autumn-Lynn Harrison, David C. Douglas, Vanessa R. von Biela, Todd E. Katzner, Movements and habitat use of loons for assessment of conservation buffer zones in the Arctic Coastal Plain of northern Alaska, Global Ecology and Conservation, 10.1016/j.gecco.2020.e00980, (e00980), (2020).
- Mohammad S. Farhadinia, Théo Michelot, Paul J. Johnson, Luke T. B. Hunter, David W. Macdonald, Understanding decision making in a food-caching predator using hidden Markov models, Movement Ecology, 10.1186/s40462-020-0195-z, 8, 1, (2020).
- Cameron L. Rutt, Karl Mokross, Michael D. Kaller, Philip C Stouffer, Experimental forest fragmentation alters Amazonian mixed-species flocks, Biological Conservation, 10.1016/j.biocon.2020.108415, 242, (108415), (2020).
- Guillaume Péron, Justin M. Calabrese, Olivier Duriez, Christen H. Fleming, Ruth García-Jiménez, Alison Johnston, Sergio A. Lambertucci, Kamran Safi, Emily L. C. Shepard, The challenges of estimating the distribution of flight heights from telemetry or altimetry data, Animal Biotelemetry, 10.1186/s40317-020-00194-z, 8, 1, (2020).
- Marianna Chimienti, Monica F. Blasi, Sandra Hochscheid, Movement patterns of large juvenile loggerhead turtles in the Mediterranean Sea: Ontogenetic space use in a small ocean basin, Ecology and Evolution, 10.1002/ece3.6370, 10, 14, (6978-6992), (2020).
- Timothy Barry, Eliezer Gurarie, Farid Cheraghi, Ilpo Kojola, William F. Fagan, Does dispersal make the heart grow bolder? Avoidance of anthropogenic habitat elements across wolf life history, Animal Behaviour, 10.1016/j.anbehav.2020.06.015, 166, (219-231), (2020).
- Michael J. Noonan, Christen H. Fleming, Marlee A. Tucker, Roland Kays, Autumn‐Lynn Harrison, Margaret C. Crofoot, Briana Abrahms, Susan C. Alberts, Abdullahi H. Ali, Jeanne Altmann, Pamela Castro Antunes, Nina Attias, Jerrold L. Belant, Dean E. Beyer, Laura R. Bidner, Niels Blaum, Randall B. Boone, Damien Caillaud, Rogerio Cunha Paula, J. Antonio la Torre, Jasja Dekker, Christopher S. DePerno, Mohammad Farhadinia, Julian Fennessy, Claudia Fichtel, Christina Fischer, Adam Ford, Jacob R. Goheen, Rasmus W. Havmøller, Ben T. Hirsch, Cindy Hurtado, Lynne A. Isbell, René Janssen, Florian Jeltsch, Petra Kaczensky, Yayoi Kaneko, Peter Kappeler, Anjan Katna, Matthew Kauffman, Flavia Koch, Abhijeet Kulkarni, Scott LaPoint, Peter Leimgruber, David W. Macdonald, A. Catherine Markham, Laura McMahon, Katherine Mertes, Christopher E. Moorman, Ronaldo G. Morato, Alexander M. Moßbrucker, Guilherme Mourão, David O'Connor, Luiz Gustavo R. Oliveira‐Santos, Jennifer Pastorini, Bruce D. Patterson, Janet Rachlow, Dustin H. Ranglack, Neil Reid, David M. Scantlebury, Dawn M. Scott, Nuria Selva, Agnieszka Sergiel, Melissa Songer, Nucharin Songsasen, Jared A. Stabach, Jenna Stacy‐Dawes, Morgan B. Swingen, Jeffrey J. Thompson, Wiebke Ullmann, Abi Tamim Vanak, Maria Thaker, John W. Wilson, Koji Yamazaki, Richard W. Yarnell, Filip Zieba, Tomasz Zwijacz‐Kozica, William F. Fagan, Thomas Mueller, Justin M. Calabrese, Effects of body size on estimation of mammalian area requirements, Conservation Biology, 10.1111/cobi.13495, 34, 4, (1017-1028), (2020).
- Steven J. Hromada, Todd C. Esque, Amy G. Vandergast, Kirsten E. Dutcher, Corey I. Mitchell, Miranda E. Gray, Tony Chang, Brett G. Dickson, Kenneth E. Nussear, Using movement to inform conservation corridor design for Mojave desert tortoise, Movement Ecology, 10.1186/s40462-020-00224-8, 8, 1, (2020).
- R. Kays, R. R. Dunn, A. W. Parsons, B. Mcdonald, T. Perkins, S. A. Powers, L. Shell, J. L. McDonald, H. Cole, H. Kikillus, L. Woods, H. Tindle, P. Roetman, The small home ranges and large local ecological impacts of pet cats, Animal Conservation, 10.1111/acv.12563, 23, 5, (516-523), (2020).
- Jared K. Wilson‐Aggarwal, Cecily E. D. Goodwin, George J. F. Swan, Helen Fielding, Zerihun Tadesse, Desalegn Getahun, Anyaro Odiel, Alamo Adam, Harry H. Marshall, Jessica Bryant, James A. Zingeser, Robbie A. McDonald, Ecology of domestic dogs (Canis familiaris) as a host for Guinea worm (Dracunculus medinensis) infection in Ethiopia, Transboundary and Emerging Diseases, 10.1111/tbed.13711, 0, 0, (2020).
- Kelsey E Fisher, James S Adelman, Steven P Bradbury, Employing Very High Frequency (VHF) Radio Telemetry to Recreate Monarch Butterfly Flight Paths, Environmental Entomology, 10.1093/ee/nvaa019, (2020).
- Lucía L. Tórrez-Herrera, Grace H. Davis, Margaret C. Crofoot, Do Monkeys Avoid Areas of Home Range Overlap Because They Are Dangerous? A Test of the Risk Hypothesis in White-Faced Capuchin Monkeys (Cebus capucinus), International Journal of Primatology, 10.1007/s10764-019-00110-0, (2020).
- Ülo Väli, Paweł Mirski, Gunnar Sein, Urmas Abel, Grete Tõnisalu, Urmas Sellis, Movement patterns of an avian generalist predator indicate functional heterogeneity in agricultural landscape, Landscape Ecology, 10.1007/s10980-020-01043-3, (2020).
- Cindy M. Hurtado, Harald Beck, Paporn Thebpanya, Mariana Altrichter, Spatial patterns of the first groups of collared peccaries (Pecari tajacu) reintroduced in South America, Tropical Ecology, 10.1007/s42965-020-00099-1, (2020).
- Machawe I Maphalala, Ara Monadjem, Keith L Bildstein, Shane McPherson, Ben Hoffman, Colleen T Downs, Ranging behaviour of Long-crested Eagles Lophaetus occipitalis in human-modified landscapes of KwaZulu-Natal, South Africa , Ostrich, 10.2989/00306525.2020.1770888, (1-7), (2020).
- Bart Kranstauber, Gabriella E. C. Gall, Tim Vink, Tim Clutton‐Brock, Marta B. Manser, Long‐term movements and home‐range changes: Rapid territory shifts in meerkats, Journal of Animal Ecology, 10.1111/1365-2656.13129, 89, 3, (772-783), (2019).
- James Grogan, Andrew Plumptre, Joshua Mabonga, Simon Nampindo, Mustapha Nsubuga, Andrew Balmford, Ranging behaviour of Uganda’s elephants, African Journal of Ecology, 10.1111/aje.12643, 58, 1, (2-13), (2019).
- Mohammad S. Farhadinia, David R. Heit, Robert A. Montgomery, Paul J. Johnson, Kaveh Hobeali, Luke T. B. Hunter, David W. Macdonald, Vertical relief facilitates spatial segregation of a high density large carnivore population, Oikos, 10.1111/oik.06724, 129, 3, (346-355), (2019).
- Cameron Parsons, Jeff Niedermeyer, Nicholas Gould, Phillip Brown, Jennifer Strules, Arielle W. Parsons, J. Bernardo Mesa‐Cruz, Marcella J. Kelly, Michael J. Hooker, Michael J. Chamberlain, Colleen Olfenbuttel, Christopher DePerno, Sophia Kathariou, Listeria monocytogenes at the human–wildlife interface: black bears (Ursus americanus) as potential vehicles for Listeria, Microbial Biotechnology, 10.1111/1751-7915.13509, 13, 3, (706-721), (2019).
- Dejid Nandintsetseg, Chloe Bracis, Kirk A. Olson, Katrin Böhning‐Gaese, Justin M. Calabrese, Buyanaa Chimeddorj, William F. Fagan, Christen H. Fleming, Michael Heiner, Petra Kaczensky, Peter Leimgruber, Dalannast Munkhnast, Theresa Stratmann, Thomas Mueller, Challenges in the conservation of wide‐ranging nomadic species, Journal of Applied Ecology, 10.1111/1365-2664.13380, 56, 8, (1916-1926), (2019).
- Ulrike E. Schlägel, Johannes Signer, Antje Herde, Sophie Eden, Florian Jeltsch, Jana A. Eccard, Melanie Dammhahn, Estimating interactions between individuals from concurrent animal movements, Methods in Ecology and Evolution, 10.1111/2041-210X.13235, 10, 8, (1234-1245), (2019).
- Christen H. Fleming, Michael J. Noonan, Emilia Patricia Medici, Justin M. Calabrese, Overcoming the challenge of small effective sample sizes in home‐range estimation, Methods in Ecology and Evolution, 10.1111/2041-210X.13270, 10, 10, (1679-1689), (2019).
- Mathias D'haen, Julian Fennessy, Jared A. Stabach, Karolína Brandlová, Population structure and spatial ecology of Kordofan giraffe in Garamba National Park, Democratic Republic of Congo, Ecology and Evolution, 10.1002/ece3.5640, 9, 19, (11395-11405), (2019).
- Michael J. Noonan, Christen H. Fleming, Thomas S. Akre, Jonathan Drescher-Lehman, Eliezer Gurarie, Autumn-Lynn Harrison, Roland Kays, Justin M. Calabrese, Scale-insensitive estimation of speed and distance traveled from animal tracking data, Movement Ecology, 10.1186/s40462-019-0177-1, 7, 1, (2019).
- Michael J. Noonan, Marlee A. Tucker, Christen H. Fleming, Thomas S. Akre, Susan C. Alberts, Abdullahi H. Ali, Jeanne Altmann, Pamela Castro Antunes, Jerrold L. Belant, Dean Beyer, Niels Blaum, Katrin Böhning‐Gaese, Laury Cullen, Rogerio Cunha Paula, Jasja Dekker, Jonathan Drescher‐Lehman, Nina Farwig, Claudia Fichtel, Christina Fischer, Adam T. Ford, Jacob R. Goheen, René Janssen, Florian Jeltsch, Matthew Kauffman, Peter M. Kappeler, Flávia Koch, Scott LaPoint, A. Catherine Markham, Emilia Patricia Medici, Ronaldo G. Morato, Ran Nathan, Luiz Gustavo R. Oliveira‐Santos, Kirk A. Olson, Bruce D. Patterson, Agustin Paviolo, Emiliano Esterci Ramalho, Sascha Rösner, Dana G. Schabo, Nuria Selva, Agnieszka Sergiel, Marina Xavier da Silva, Orr Spiegel, Peter Thompson, Wiebke Ullmann, Filip Zięba, Tomasz Zwijacz‐Kozica, William F. Fagan, Thomas Mueller, Justin M. Calabrese, A comprehensive analysis of autocorrelation and bias in home range estimation, Ecological Monographs, 10.1002/ecm.1344, 89, 2, (2019).
- Kelsey E. Paolini, Bronson K. Strickland, Jessica L. Tegt, Kurt C. VerCauteren, Garrett M. Street, The habitat functional response links seasonal third‐order selection to second‐order landscape characteristics, Ecology and Evolution, 10.1002/ece3.5072, 9, 8, (4683-4691), (2019).
- Johannes Signer, John Fieberg, Tal Avgar, Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses, Ecology and Evolution, 10.1002/ece3.4823, 9, 2, (880-890), (2019).
- Guillaume Péron, The time frame of home‐range studies: from function to utilization, Biological Reviews, 10.1111/brv.12545, 94, 6, (1974-1982), (2019).
- Christopher M. Tonra, James R. Wright, Stephen N. Matthews, Remote estimation of overwintering home ranges in an elusive, migratory nocturnal bird, Ecology and Evolution, 10.1002/ece3.5723, 9, 22, (12586-12599), (2019).
- Guillaume Péron, Modified home range kernel density estimators that take environmental interactions into account, Movement Ecology, 10.1186/s40462-019-0161-9, 7, 1, (2019).
- Lorenzo Quaglietta, Miguel Porto, SiMRiv: an R package for mechanistic simulation of individual, spatially-explicit multistate movements in rivers, heterogeneous and homogeneous spaces incorporating landscape bias, Movement Ecology, 10.1186/s40462-019-0154-8, 7, 1, (2019).
- J. Antonio de la Torre, Marina Rivero, Insights of the Movements of the Jaguar in the Tropical Forests of Southern Mexico, Movement Ecology of Neotropical Forest Mammals, 10.1007/978-3-030-03463-4, (217-241), (2019).
- José Fernando Moreira-Ramírez, Rafael Reyna-Hurtado, Mircea Hidalgo-Mihart, Eduardo J. Naranjo, Milton C. Ribeiro, Rony García-Anleu, Roan McNab, Jeremy Radachowsky, Melvin Mérida, Marcos Briceño-Méndez, Gabriela Ponce-Santizo, White-Lipped Peccary Home-Range Size in the Maya Forest of Guatemala and México, Movement Ecology of Neotropical Forest Mammals, 10.1007/978-3-030-03463-4, (21-37), (2019).
- Cécile Richard-Hansen, Rachel Berzins, Matthis Petit, Ondine Rux, Bertrand Goguillon, Luc Clément, Movements of White-Lipped Peccary in French Guiana, Movement Ecology of Neotropical Forest Mammals, 10.1007/978-3-030-03463-4, (57-75), (2019).
- Nathan M. Bacheler, Théo Michelot, Robin T. Cheshire, Kyle W. Shertzer, Fine-scale movement patterns and behavioral states of gray triggerfish Balistes capriscus determined from acoustic telemetry and hidden Markov models, Fisheries Research, 10.1016/j.fishres.2019.02.014, 215, (76-89), (2019).
- Ninon F. V. Meyer, Ricardo Moreno, Miguel Angel Martínez-Morales, Rafael Reyna-Hurtado, Spatial Ecology of a Large and Endangered Tropical Mammal: The White-Lipped Peccary in Darién, Panama, Movement Ecology of Neotropical Forest Mammals, 10.1007/978-3-030-03463-4, (77-93), (2019).
- Wade A. Ryberg, Timothy B. Garrett, Connor S. Adams, Tyler A. Campbell, Danielle K. Walkup, Timothy E. Johnson, Toby J. Hibbitts, Life in the thornscrub: movement, home range, and territoriality of the reticulate collared lizard ( Crotaphytus reticulatus ) , Journal of Natural History, 10.1080/00222933.2019.1668491, 53, 27-28, (1707-1719), (2019).
- Hiroaki Ishii, Koji Yamazaki, Michael J. Noonan, Christina D. Buesching, Chris Newman, Yayoi Kaneko, Testing cellular phone-enhanced GPS tracking technology for urban carnivores, Animal Biotelemetry, 10.1186/s40317-019-0180-8, 7, 1, (2019).
- H. N. Abernathy, D. A. Crawford, E. P. Garrison, R. B. Chandler, M. L. Conner, K. V. Miller, M. J. Cherry, Deer movement and resource selection during Hurricane Irma: implications for extreme climatic events and wildlife, Proceedings of the Royal Society B: Biological Sciences, 10.1098/rspb.2019.2230, 286, 1916, (20192230), (2019).
- Katherine Mertes, Jared A. Stabach, Melissa Songer, Tim Wacher, John Newby, Justin Chuven, Shaikha Al Dhaheri, Peter Leimgruber, Steven Monfort, Management Background and Release Conditions Structure Post-release Movements in Reintroduced Ungulates, Frontiers in Ecology and Evolution, 10.3389/fevo.2019.00470, 7, (2019).
- Nicolas Vanermen, Wouter Courtens, Robin Daelemans, Luc Lens, Wendt Müller, Marc Van de walle, Hilbran Verstraete, Eric W M Stienen, Attracted to the outside: a meso-scale response pattern of lesser black-backed gulls at an offshore wind farm revealed by GPS telemetry, ICES Journal of Marine Science, 10.1093/icesjms/fsz199, (2019).
- A L J Desbiez, D Kluyber, G F Massocato, L G R Oliveira-Santos, N Attias, Spatial ecology of the giant armadillo Priodontes maximus in Midwestern Brazil, Journal of Mammalogy, 10.1093/jmammal/gyz172, (2019).
- undefined Guo, undefined Du, undefined Ma, undefined Huo, undefined Peng, A Model for Animal Home Range Estimation Based on the Active Learning Method, ISPRS International Journal of Geo-Information, 10.3390/ijgi8110490, 8, 11, (490), (2019).
- Jehyeok Rew, Sungwoo Park, Yongjang Cho, Seungwon Jung, Eenjun Hwang, Animal Movement Prediction Based on Predictive Recurrent Neural Network, Sensors, 10.3390/s19204411, 19, 20, (4411), (2019).
- Lucy J. Mitchell, Piran C. L. White, Kathryn E. Arnold, The trade-off between fix rate and tracking duration on estimates of home range size and habitat selection for small vertebrates, PLOS ONE, 10.1371/journal.pone.0219357, 14, 7, (e0219357), (2019).
- Roy T. McBride, Jeffrey J. Thompson, Spatial ecology of Paraguay’s last remaining Atlantic forest Jaguars ( Panthera onca ): implications for their long-term survival , Biodiversity, 10.1080/14888386.2019.1590237, (1-7), (2019).
- WILLIAM GOULDING, PATRICK T. MOSS, CLIVE A. MCALPINE, An assessment of the Tagula Honeyeater Microptilotis vicina, a Data Deficient bird species in a Melanesian endemic hotspot, Bird Conservation International, 10.1017/S095927091900025X, (1-20), (2019).
- John F. McEvoy, Graham P. Hall, Paul G. McDonald, Movements of Australian Wood Ducks ( Chenonetta jubata ) in an agricultural landscape , Emu - Austral Ornithology, 10.1080/01584197.2018.1562306, (1-10), (2019).
- Cecily E.D. Goodwin, David J. Hodgson, Sallie Bailey, Jonathan Bennie, Robbie A. McDonald, Habitat preferences of hazel dormice Muscardinus avellanarius and the effects of tree-felling on their movement, Forest Ecology and Management, 10.1016/j.foreco.2018.03.035, 427, (190-199), (2018).
- Femke Broekhuis, Charlene Bissett, Elena V. Chelysheva, Field Methods for Visual and Remote Monitoring of the Cheetah, Cheetahs: Biology and Conservation, 10.1016/B978-0-12-804088-1.00032-0, (447-455), (2018).
- Adrián Naveda-Rodríguez, Rubén Cueva, Galo Zapata-Ríos, Space Use of Yellow-Spotted River Turtles ( Podocnemis unifilis ) in Yasuni National Park, Ecuador , Chelonian Conservation and Biology, 10.2744/CCB-1270.1, 17, 1, (37-43), (2018).
- Guillaume Péron, Antoine Duparc, Mathieu Garel, Pascal Marchand, Nicolas Morellet, Sonia Saïd, Anne Loison, Circadian periodicity in space use by ungulates of temperate regions: How much, when and why?, Journal of Animal Ecology, 10.1111/1365-2656.12857, 87, 5, (1299-1308), (2018).
- Evan M. Rehm, Mallory B. Balsat, Nathan P. Lemoine, Julie A. Savidge, Spatial dynamics of habitat use informs reintroduction efforts in the presence of an invasive predator, Journal of Applied Ecology, 10.1111/1365-2664.13076, 55, 4, (1790-1798), (2018).
- Camrin D. Braun, Benjamin Galuardi, Simon R. Thorrold, HMMoce: An R package for improved geolocation of archival‐tagged fishes using a hidden Markov method, Methods in Ecology and Evolution, 10.1111/2041-210X.12959, 9, 5, (1212-1220), (2018).
- Matthew M. Guzzo, Travis E. Van Leeuwen, Jack Hollins, Barbara Koeck, Matthew Newton, Dale M. Webber, Frank I. Smith, David M. Bailey, Shaun S. Killen, Field testing a novel high residence positioning system for monitoring the fine‐scale movements of aquatic organisms, Methods in Ecology and Evolution, 10.1111/2041-210X.12993, 9, 6, (1478-1488), (2018).
- Brett T. McClintock, Théo Michelot, momentuHMM: R package for generalized hidden Markov models of animal movement, Methods in Ecology and Evolution, 10.1111/2041-210X.12995, 9, 6, (1518-1530), (2018).
- Kevin Winner, Michael J. Noonan, Christen H. Fleming, Kirk A. Olson, Thomas Mueller, Daniel Sheldon, Justin M. Calabrese, Statistical inference for home range overlap, Methods in Ecology and Evolution, 10.1111/2041-210X.13027, 9, 7, (1679-1691), (2018).
- C. H. Fleming, D. Sheldon, W. F. Fagan, P. Leimgruber, T. Mueller, D. Nandintsetseg, M. J. Noonan, K. A. Olson, E. Setyawan, A. Sianipar, J. M. Calabrese, Correcting for missing and irregular data in home‐range estimation, Ecological Applications, 10.1002/eap.1704, 28, 4, (1003-1010), (2018).
- Ariel K. Lenske, Joseph J. Nocera, Field test of an automated radio‐telemetry system: tracking local space use of aerial insectivores, Journal of Field Ornithology, 10.1111/jofo.12254, 89, 2, (173-187), (2018).
- Michael E. Byrne, Sarah C. Webster, Stacey L. Lance, Cara N. Love, Thomas G. Hinton, Dmitry Shamovich, James C. Beasley, Evidence of long-distance dispersal of a gray wolf from the Chernobyl Exclusion Zone, European Journal of Wildlife Research, 10.1007/s10344-018-1201-2, 64, 4, (2018).
- Gretchen H. Roffler, David P. Gregovich, Wolf space use during denning season on Prince of Wales Island, Alaska, Wildlife Biology, 10.2981/wlb.00468, 2018, 1, (wlb.00468), (2018).
- R.G. Morato, G.M. Connette, J.A. Stabach, R.C. De Paula, K.M.P.M. Ferraz, D.L.Z. Kantek, S.S. Miyazaki, T.D.C. Pereira, L.C. Silva, A. Paviolo, C. De Angelo, M.S. Di Bitetti, P. Cruz, F. Lima, L. Cullen, D.A. Sana, E.E. Ramalho, M.M. Carvalho, M.X. da Silva, M.D.F. Moraes, A. Vogliotti, J.A. May, M. Haberfeld, L. Rampim, L. Sartorello, G.R. Araujo, G. Wittemyer, M.C. Ribeiro, P. Leimgruber, Resource selection in an apex predator and variation in response to local landscape characteristics, Biological Conservation, 10.1016/j.biocon.2018.10.022, 228, (233-240), (2018).
- Roy T. McBride, Jeffrey J. Thompson, Space use and movement of jaguar (Panthera onca) in western Paraguay, Mammalia, 10.1515/mammalia-2017-0040, 82, 6, (540-549), (2018).
- Shifra Z. Goldenberg, Iain Douglas-Hamilton, George Wittemyer, Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality, Proceedings of the Royal Society B: Biological Sciences, 10.1098/rspb.2018.0286, 285, 1879, (20180286), (2018).
- Mohammad S. Farhadinia, Paul J. Johnson, David W. Macdonald, Luke T. B. Hunter, Anchoring and adjusting amidst humans: Ranging behavior of Persian leopards along the Iran-Turkmenistan borderland, PLOS ONE, 10.1371/journal.pone.0196602, 13, 5, (e0196602), (2018).
- Eliezer Gurarie, Francesca Cagnacci, Wibke Peters, Christen H. Fleming, Justin M. Calabrese, Thomas Mueller, William F. Fagan, A framework for modelling range shifts and migrations: asking when, whither, whether and will it return, Journal of Animal Ecology, 10.1111/1365-2656.12674, 86, 4, (943-959), (2017).
- Guillaume Péron, Christen H. Fleming, Olivier Duriez, Julie Fluhr, Christian Itty, Sergio Lambertucci, Kamran Safi, Emily L. C. Shepard, Justin M. Calabrese, The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor, Journal of Applied Ecology, 10.1111/1365-2664.12909, 54, 6, (1895-1906), (2017).
- Steven F. Railsback, Why It Is Time to Put PHABSIM Out to Pasture: Response to Comments 1 and 2, Fisheries, 10.1080/03632415.2017.1368296, 42, 10, (517-518), (2017).
- Guillaume Péron, Christen H. Fleming, Rogerio C. Paula, Numi Mitchell, Michael Strohbach, Peter Leimgruber, Justin M. Calabrese, Periodic continuous‐time movement models uncover behavioral changes of wild canids along anthropization gradients, Ecological Monographs, 10.1002/ecm.1260, 87, 3, (442-456), (2017).
- Shannon L. Kay, Justin W. Fischer, Andrew J. Monaghan, James C. Beasley, Raoul Boughton, Tyler A. Campbell, Susan M. Cooper, Stephen S. Ditchkoff, Steve B. Hartley, John C. Kilgo, Samantha M. Wisely, A. Christy Wyckoff, Kurt C. VerCauteren, Kim M. Pepin, Quantifying drivers of wild pig movement across multiple spatial and temporal scales, Movement Ecology, 10.1186/s40462-017-0105-1, 5, 1, (2017).
- Christen H. Fleming, Daniel Sheldon, Eliezer Gurarie, William F. Fagan, Scott LaPoint, Justin M. Calabrese, Kálmán filters for continuous-time movement models, Ecological Informatics, 10.1016/j.ecoinf.2017.04.008, 40, (8-21), (2017).
- Eliezer Gurarie, Christen H. Fleming, William F. Fagan, Kristin L. Laidre, Jesús Hernández-Pliego, Otso Ovaskainen, Correlated velocity models as a fundamental unit of animal movement: synthesis and applications, Movement Ecology, 10.1186/s40462-017-0103-3, 5, 1, (2017).
- Johannes Signer, John Fieberg, Tal Avgar, Estimating utilization distributions from fitted step‐selection functions, Ecosphere, 10.1002/ecs2.1771, 8, 4, (2017).
- Christen H. Fleming, Justin M. Calabrese, A new kernel density estimator for accurate home‐range and species‐range area estimation, Methods in Ecology and Evolution, 10.1111/2041-210X.12673, 8, 5, (571-579), (2016).
- Théo Michelot, Roland Langrock, Toby A. Patterson, moveHMM: an R package for the statistical modelling of animal movement data using hidden Markov models, Methods in Ecology and Evolution, 10.1111/2041-210X.12578, 7, 11, (1308-1315), (2016).
- Guillaume Péron, Chris H. Fleming, Rogerio C. de Paula, Justin M. Calabrese, Uncovering periodic patterns of space use in animal tracking data with periodograms, including a new algorithm for the Lomb-Scargle periodogram and improved randomization tests, Movement Ecology, 10.1186/s40462-016-0084-7, 4, 1, (2016).




