abc: an R package for approximate Bayesian computation (ABC)
Correspondence site: http://www.respond2articles.com/MEE/
Summary
1. Many recent statistical applications involve inference under complex models, where it is computationally prohibitive to calculate likelihoods but possible to simulate data. Approximate Bayesian computation (ABC) is devoted to these complex models because it bypasses the evaluation of the likelihood function by comparing observed and simulated data.
2. We introduce the R package ‘abc’ that implements several ABC algorithms for performing parameter estimation and model selection. In particular, the recently developed nonlinear heteroscedastic regression methods for ABC are implemented. The ‘abc’ package also includes a cross‐validation tool for measuring the accuracy of ABC estimates and to calculate the misclassification probabilities when performing model selection. The main functions are accompanied by appropriate summary and plotting tools.
3. R is already widely used in bioinformatics and several fields of biology. The R package ‘abc’ will make the ABC algorithms available to a large number of R users. ‘abc’ is a freely available R package under the GPL license, and it can be downloaded at http://cran.r‐project.org/web/packages/abc/index.html.
Introduction
In recent years, approximate Bayesian computation (ABC) has become a popular method for parameter inference and model selection under complex models, where the evaluation of the likelihood function is computationally prohibitive. ABC bypasses exact likelihood calculations via the use of summary statistics and simulations, which, in turn, allows the consideration of highly complex models. The name ABC was first coined by Beaumont et al. (2002) in population genetics, for inference under coalescent models, but its origin goes back to works by Tavaréet al. (1997); Pritchard et al. (1999). ABC is now increasingly applied especially in ecology or systems biology (for reviews of ABC methods and applications, see Beaumont 2010; Bertorelle et al. 2010; Csilléry et al. 2010). Software implementations of ABC dedicated to particular problems have already been developed in these fields (Anderson et al. 2005; Hickerson et al. 2007; Cornuet et al. 2008; Jobin & Mountain 2008; Tallmon et al. 2008; Lopes et al. 2009; Thornton 2009; Bray et al. 2010; Cornuet et al. 2010; Liepe et al. 2010; Wegmann et al. 2010; Huang et al. 2011).
The integration of ABC in a software package poses several challenges. First, data simulation, which is in the core of any ABC analysis, is specific to the model in question. Thus, many existing ABC software are specific to a particular class of models (Hickerson et al. 2007; Cornuet et al. 2008; Lopes et al. 2009) or even to the estimation of a particular parameter (Tallmon et al. 2008). Further, model comparison is an integral part of any Bayesian analysis; thus, it is essential to provide software, where users are able to fit different models to their data. Second, an ABC analysis often follows a trial–error approach, where users experiment with different models, ABC algorithms or summary statistics. Therefore, it is important that users can run different analyses using batch files, which contain each analysis as a sequence of commands. Third, ABC is subject to intensive research, and many new algorithms have been published in the past few years (Beaumont et al. 2002, 2009; Bortot et al. 2007; Sisson et al. 2007; Blum 2010). Thus, an ABC software should be flexible enough to accommodate the new developments of the field.
Here, we introduce a generalist R package ‘abc’, which aims to address the above challenges (R Development Core Team 2011). The price to pay for the generality and flexibility is that the simulation of data and the calculation of summary statistics are left to the users. However, simulation software might be called from an R session, which opens up the possibility for a highly interactive ABC analysis. For coalescent models, for instance, users can apply one of the many existing software for simulating genetic data such as ‘ms’ (Hudson 2002) or ‘fastsimcoal’ (Excoffier & Foll 2011). The calculation of summary statistics could be performed using either R or some specific software such as ‘msABC’ (Pavlidis et al. 2010), which runs ‘ms’ and calculates summary statistics from the output files. ABC methods have also been developed to handle full data (Sousa et al. 2009) – allele frequencies in population genetics – but the ‘abc’ package is dedicated to summary statistic approaches, which represent the bulk of the literature.
R provides many advantages in the context of ABC: (i) R already possesses the necessary tools to handle, analyse and visualise large data sets, (ii) sequences of R commands can be saved in a script file and (iii) R is a free and collaborative project; thus, new algorithms can be easily integrated to the package (e.g. via contributions from their authors).
Implementation
The main steps of an ABC analysis follow the general scheme of any Bayesian analysis: formulating a model, fitting the model to data (parameter estimation) and improving the model by checking its fit (posterior predictive checks) and comparing it to other models (Gelman et al. 2003; Csilléry et al. 2010). ‘abc’ provides functions for the inference and model comparison steps, and generic tools of R can be used for model checking.
To use the package, the following R objects should be prepared: a vector of the observed summary statistics, a matrix of the simulated summary statistics, where each row corresponds to a simulation and each column corresponds to a summary statistic, and finally, a matrix of the simulated parameter values, where each row corresponds to a simulation and each column corresponds to a parameter.
Parameter inference
For the sake of clarity, we recall the general scheme of parameter estimation with ABC. Suppose that we want to compute the posterior probability distribution of a univariate or multivariate parameter, θ. A parameter value θi is sampled from its prior distribution to simulate a data set yi, for i = 1,…,n where n is the number of simulations. A set of summary statistics S(yi) is computed from the simulated data and compared to the summary statistics obtained from the actual data S(y0) using a distance measure d. We consider the Euclidean distance for d, and the ‘abc’ package standardises each summary statistic with a robust estimate of the standard deviation (the median absolute deviation). If d(S(yi),S(y0)) (i.e. the distance between S(yi) and S(y0)) is less than a given threshold, the parameter value θi is accepted. To set a threshold for d, above which simulations are rejected, the user has to provide the tolerance rate, which is defined as the proportion of accepted simulations. The accepted θi’s form a sample from an approximation of the posterior distribution. The estimation of the posterior distribution can be improved by the use of regression techniques, which we detail in the following paragraph.
(eqn 1)
(eqn 2)
is the estimated conditional mean and the
s are the empirical residuals of the regression (Beaumont et al. 2002). Additionally, a correction for heteroscedasticity is applied, by default, in “abc”,
(eqn 3)
is the estimated conditional standard deviation (Blum & François 2010).
The function “abc” returns an object of class “abc” that can be printed, summarised and plotted using the S3 methods of the R generic functions, “print”, “summary”, “hist” and “plot”. The function “print” returns a description of the object. The function “summary” calculates summaries of the posterior distributions, such as the mode, mean, median and credible intervals, taking into account the posterior weights, when appropriate. The “hist” function displays the histogram of the weighted posterior sample. The “plot” function generates various plots that allow the evaluation of the quality of estimation when one of the regression methods is used. The following plots are generated: a density plot of the prior distribution, a density plot of the posterior distribution estimated with and without regression‐based correction, a scatter plot of the Euclidean distances as a function of the parameter values and a normal Q–Q plot of the residuals from the regression. When the heteroscedastic regression model is used, a normal Q–Q plot of the standardised residuals is displayed (see Fig. 1 panel a).

Typical graphical outputs of the R ‘abc’ package (model selection and estimation of the effective population size Ne from population genetic data). (a) Parameter inference and regression diagnostics: plots show (clock‐wise) the prior distribution, the distances between observed and simulated summary statistics as a function of the parameter values (where red points indicate the accepted values), normal Q–Q plot of the residuals of the regression, and the posterior distribution obtained with and without the regression correction method (and the prior distribution, for reference). (b) Cross‐validation for parameter estimation: plot shows the estimated values as a function of true parameter values. Different colours correspond to different values of the tolerance rate. (c) Model misclassification: a graphical illustration of the confusion matrix for three models. The colours from dark to light grey correspond to models bott, const, exp, accordingly. If the simulations were perfectly classified, each bar would have a single colour of its own corresponding model. The following R code can be used to re‐generate these plots. > library(abc)> data(human)> cv.modsel <‐ cv4postpr(models, stat.3pops.sim, nval=50, tol=.01, method=“mnlogistic”)> plot(cv.modsel)> stat.italy.sim <‐ subset(stat.3pops.sim, subset=models==“bott”)> cv.res.reg <‐ cv4abc(data.frame(Na=par.italy.sim [,“Ne”]), stat.italy.sim, + nval=200, tols=c(.005,.001), method=“loclinear”)> plot(cv.res.reg, caption=“Ne”)> res <‐ abc(target=stat.voight[“italian”,], param=data.frame(Na=par.italy.sim [, “Ne”]), + sumstat=stat.italy.sim, tol=0.005, transf=c(“log”), method=“neuralnet”)> plot(res, param=par.italy.sim [, “Ne”])
Finally, we note that alternative algorithms exist that sample from an updated distribution that is closer in shape to the posterior than to the prior (Marjoram et al. 2003; Beaumont et al. 2009; Wegmann et al. 2010). However, we do not implement these methods in the ‘abc’ package because they require the repeated use of the simulation software.
Posterior predictive checks
We strongly recommend that users perform posterior predictive checks after fitting their model to the data. There is no specific function in the package ‘abc’ for posterior predictive checks; nevertheless, the task can be easily carried out using R and the simulation software. A fully executable example using R and ‘ms’ can be found in the package's vignette. Briefly, to perform model checking, one can obtain replicates from the posterior distribution of the parameters using the function abc. Then, one can simulate the summary statistics a posteriori using the simulation software. In ABC, posterior predictive checks might use the summary statistics twice: once for sampling from the posterior distribution and once for comparing the marginal posterior predictive distributions to the observed values of the summary statistics. To avoid this circularity, we might consider using different summary statistics for posterior predictive checks than for parameter estimation, for example using the expected deviance function.
Cross‐validation
(eqn 4)
is the estimated parameter value (the posterior median). The “plot” function displays the estimated parameter values as a function of the true values (see Fig. 1 panel b).
Model selection
The function “postpr” implements model selection to approximate the posterior probability of a model M as Pr(M|S(y0)). Three different methods are implemented. With the rejection method (“rejection”), the approximate posterior probability of a given model is proportional to the proportion of accepted simulations under this model. The two other methods are based on multinomial logistic regression (“mnlogistic”) or neural networks (“neuralnet”). In these two approaches, the model indicator is treated as the response variable of a polychotomous regression, where the summary statistics are the independent variables (Beaumont 2008). Using neural networks can be efficient when highly dimensional statistics are used. Any of these methods are valid when the different models to be compared are, a priori, equally likely, and the same number of simulations are performed under each model. The “summary” S3 method for “postpr” displays the approximate posterior model probabilities, and calculates the ratios of model probabilities, the approximate Bayes factor, for all possible pairs of models (François et al. 2008).
A further function, “expected.deviance”, is implemented to guide the model selection procedure. The function computes an approximate expected deviance from the posterior predictive distribution. Thus, to use the function, users have to re‐use the simulation tool and to simulate data from the posterior parameter values. The method is particularly advantageous when it is used with one of the regression methods. Further details on the method can be found in François & Laval (2011), and fully worked out examples are provided in the package’s manual pages.
Computing misclassification errors
A cross‐validation tool is available for model selection as well via the function “cv4postpr”. The objective is to evaluate whether model selection with ABC is able to distinguish between the proposed models by making use of the existing simulations. The summary statistics from one of the simulations are considered as pseudo‐observed summary statistics and classified using all the remaining simulations. Then, if the summary statistics contain sufficient information to discriminate among models, one expects that a large posterior probability should be assigned to the model that generated the pseudo‐observed summary statistics. Two versions of the cross‐validation are implemented. The first version is a ‘hard’ model classification. We consider a given simulation as the pseudo‐observed data and assign it to the model for which “postpr” gives the highest posterior model probability. This procedure is repeated for a given number of simulations for each model. The results are summarised in a so‐called confusion matrix (Hastie et al. 2009). Each row of the confusion matrix represents the number of simulations under a given model, while each column represents the number of simulations assigned by “postpr”. If all simulations had been correctly classified, only the diagonal elements of the matrix would be non‐zero. The second version is called ‘soft’ classification. Here, we do not assign a simulation to the model with the highest posterior probability but average the posterior probabilities over many simulations for a given model. This procedure is again summarised as a matrix, which is similar to the confusion matrix. However, the elements of the matrix do not give model counts, but the average posterior probabilities across simulations for a given model. The matrices can be visualised with a bar plot using the “plot” S3 method for “cv4postpr” (see Fig. 1c).
Conclusions
We provide an R package ‘abc’ to perform model selection and parameter estimation via ABC. Integrating ‘abc’ within the R statistical environment offers high‐quality graphics and data visualisation tools. The R package implements recently developed non‐linear methods for ABC and is going to evolve as new algorithms and methods accumulate. We further direct our users to the package's vignette that contains a detailed worked‐through example of an ABC analysis for inferring ancestral human population size based on DNA sequence data.
Acknowledgements
We thank Mark Beaumont for kindly providing an R script that we used in the implementation of the functions abc and postpr. While working on this package, KC was funded by a post‐doctoral fellowship from the Université Joseph Fourier (ABC MSTIC) at the Computational and Mathematical Biology Team (BCM, TIMC‐IMAG) and then was hosted and financed by the Ecology and Evolution Laboratory (ENS, Paris, ANR‐06‐BDIV‐003).
References
Citing Literature
Number of times cited according to CrossRef: 246
- Thomas Pak, Ruth Baker, Joe Pitt-Francis, Pakman: a modular, efficient and portable tool for approximate Bayesian inference, Journal of Open Source Software, 10.21105/joss.01716, 5, 47, (1716), (2020).
- Yann X. C. Bourgeois, Joris A. M. Bertrand, Boris Delahaie, Hélène Holota, Christophe Thébaud, Borja Milá, Differential divergence in autosomes and sex chromosomes is associated with intra‐island diversification at a very small spatial scale in a songbird lineage, Molecular Ecology, 10.1111/mec.15396, 29, 6, (1137-1153), (2020).
- Lukas J. Musher, Peter J. Galante, Gregory Thom, Jerry W. Huntley, Mary E. Blair, Shifting ecosystem connectivity during the Pleistocene drove diversification and gene‐flow in a species complex of Neotropical birds (Tityridae: Pachyramphus), Journal of Biogeography, 10.1111/jbi.13862, 47, 8, (1714-1726), (2020).
- Dwueng-Chwuan Jhwueng, Modeling rate of adaptive trait evolution using Cox–Ingersoll–Ross process: An Approximate Bayesian Computation approach, Computational Statistics & Data Analysis, 10.1016/j.csda.2020.106924, (106924), (2020).
- Grégoire Blanchard, Philippe Birnbaum, François Munoz, Extinction–immigration dynamics lag behind environmental filtering in shaping the composition of tropical dry forests within a changing landscape, Ecography, 10.1111/ecog.04870, 43, 6, (869-881), (2020).
- Simon Blanchet, Jérôme G. Prunier, Ivan Paz‐Vinas, Keoni Saint‐Pé, Olivier Rey, Allan Raffard, Eglantine Mathieu‐Bégné, Géraldine Loot, Lisa Fourtune, Vincent Dubut, A river runs through it: The causes, consequences, and management of intraspecific diversity in river networks, Evolutionary Applications, 10.1111/eva.12941, 13, 6, (1195-1213), (2020).
- ChuanQi Zhu, Wei Tian, Pieter de Wilde, Baoquan Yin, Approximate Bayesian Computation in Parameter Estimation of Building Energy Models, Proceedings of the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019), 10.1007/978-981-13-9528-4_40, (391-399), (2020).
- Sébastien Lambert, Emmanuelle Gilot-Fromont, Carole Toïgo, Pascal Marchand, Elodie Petit, Bruno Garin-Bastuji, Dominique Gauthier, Jean-Michel Gaillard, Sophie Rossi, Anne Thébault, An individual-based model to assess the spatial and individual heterogeneity of Brucella melitensis transmission in Alpine ibex, Ecological Modelling, 10.1016/j.ecolmodel.2020.109009, 425, (109009), (2020).
- Giorgio Binelli, William Montaigne, Daniel Sabatier, Caroline Scotti‐Saintagne, Ivan Scotti, Discrepancies between genetic and ecological divergence patterns suggest a complex biogeographic history in a Neotropical genus, Ecology and Evolution, 10.1002/ece3.6227, 10, 11, (4726-4738), (2020).
- Alexander T. Xue, Michael J. Hickerson, Comparative phylogeographic inference with genome‐wide data from aggregated population pairs, Evolution, 10.1111/evo.13945, 74, 5, (808-830), (2020).
- Claudio S. Quilodrán, Beatrice Nussberger, David W. Macdonald, Juan I. Montoya‐Burgos, Mathias Currat, Projecting introgression from domestic cats into European wildcats in the Swiss Jura, Evolutionary Applications, 10.1111/eva.12968, 13, 8, (2101-2112), (2020).
- Parul Johri, Brian Charlesworth, Jeffrey D. Jensen, Toward an Evolutionarily Appropriate Null Model: Jointly Inferring Demography and Purifying Selection, Genetics, 10.1534/genetics.119.303002, 215, 1, (173-192), (2020).
- Shan‐Shan Zhu, Hans P. Comes, Ichiro Tamaki, Ya‐Nan Cao, Shota Sakaguchi, Zhao‐Yan Yap, Yan‐Qian Ding, Ying‐Xiong Qiu, Patterns of genotype variation and demographic history in Lindera glauca (Lauraceae), an apomict‐containing dioecious forest tree, Journal of Biogeography, 10.1111/jbi.13874, 47, 9, (2002-2016), (2020).
- Natalia Trujillo-Arias, María José Rodríguez-Cajarville, Eloisa Sari, Cristina Y. Miyaki, Fabricio R. Santos, Christopher C. Witt, Ana S. Barreira, Isabel Gómez, Kazuya Naoki, Pablo L. Tubaro, Gustavo S. Cabanne, Evolution between forest macrorefugia is linked to discordance between genetic and morphological variation in Neotropical passerines, Molecular Phylogenetics and Evolution, 10.1016/j.ympev.2020.106849, 149, (106849), (2020).
- E. A. Oliveira, M. F. Perez, L. A. C. Bertollo, C. C. Gestich, P. Ráb, T. Ezaz, F. H. S. Souza, P. Viana, E. Feldberg, E. H. C. Oliveira, M. B. Cioffi, Historical demography and climate driven distributional changes in a widespread Neotropical freshwater species with high economic importance, Ecography, 10.1111/ecog.04874, 43, 9, (1291-1304), (2020).
- Fanny E. Hartmann, Alodie Snirc, Amandine Cornille, Cécile Godé, Pascal Touzet, Fabienne Van Rossum, Elisabeth Fournier, Stéphanie Le Prieur, Jacqui Shykoff, Tatiana Giraud, Congruent population genetic structures and divergence histories in anther‐smut fungi and their host plants Silene italica and the Silene nutans species complex, Molecular Ecology, 10.1111/mec.15387, 29, 6, (1154-1172), (2020).
- Xiaoyang Shi, Hang Xiao, Habib Azarabadi, Juzheng Song, Xiaolong Wu, Xi Chen, Klaus S. Lackner, , Angewandte Chemie, 10.1002/ange.201906756, 132, 18, (7048-7072), (2020).
- Arun Durvasula, Sriram Sankararaman, Recovering signals of ghost archaic introgression in African populations, Science Advances, 10.1126/sciadv.aax5097, 6, 7, (eaax5097), (2020).
- Gregory Thom, Alexander T. Xue, André O. Sawakuchi, Camila C. Ribas, Michael J. Hickerson, Alexandre Aleixo, Cristina Miyaki, Quaternary climate changes as speciation drivers in the Amazon floodplains, Science Advances, 10.1126/sciadv.aax4718, 6, 11, (eaax4718), (2020).
- Anneke J. Paijmans, Martin A. Stoffel, Marthán N. Bester, Alison C. Cleary, P. J. Nico De Bruyn, Jaume Forcada, Michael E. Goebel, Simon D. Goldsworthy, Christophe Guinet, Christian Lydersen, Kit M. Kovacs, Andrew Lowther, Joseph I. Hoffman, The genetic legacy of extreme exploitation in a polar vertebrate, Scientific Reports, 10.1038/s41598-020-61560-8, 10, 1, (2020).
- Gregory Thom, Brian Tilston Smith, Marcelo Gehara, Júlia Montesanti, Matheus S. Lima-Ribeiro, Vitor Q. Piacentini, Cristina Y. Miyaki, Fabio Raposo do Amaral, Climatic dynamics and topography control genetic variation in Atlantic Forest montane birds, Molecular Phylogenetics and Evolution, 10.1016/j.ympev.2020.106812, (106812), (2020).
- Ethan B. Linck, Jorge E. Celi, Kimberly S. Sheldon, Panmixia across elevation in thermally sensitive Andean dung beetles, Ecology and Evolution, 10.1002/ece3.6185, 10, 9, (4143-4155), (2020).
- Ya‐Nan Cao, Shan‐Shan Zhu, Jun Chen, Hans P. Comes, Ian J. Wang, Lu‐Yao Chen, Shota Sakaguchi, Ying‐Xiong Qiu, Genomic insights into historical population dynamics, local adaptation, and climate change vulnerability of the East Asian Tertiary relict Euptelea (Eupteleaceae), Evolutionary Applications, 10.1111/eva.12960, 13, 8, (2038-2055), (2020).
- Chuanqi Zhu, Wei Tian, Baoquan Yin, Zhanyong Li, Jiaxin Shi, Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms, Applied Energy, 10.1016/j.apenergy.2020.115025, 268, (115025), (2020).
- Paula Esteller-Cucala, Iago Maceda, Anders D. Børglum, Ditte Demontis, Stephen V. Faraone, Bru Cormand, Oscar Lao, Genomic analysis of the natural history of attention-deficit/hyperactivity disorder using Neanderthal and ancient Homo sapiens samples, Scientific Reports, 10.1038/s41598-020-65322-4, 10, 1, (2020).
- Hans ter Steege, Paulo I. Prado, Renato A. F. de Lima, Edwin Pos, Luiz de Souza Coelho, Diogenes de Andrade Lima Filho, Rafael P. Salomão, Iêda Leão Amaral, Francisca Dionízia de Almeida Matos, Carolina V. Castilho, Oliver L. Phillips, Juan Ernesto Guevara, Marcelo de Jesus Veiga Carim, Dairon Cárdenas López, William E. Magnusson, Florian Wittmann, Maria Pires Martins, Daniel Sabatier, Mariana Victória Irume, José Renan da Silva Guimarães, Jean-François Molino, Olaf S. Bánki, Maria Teresa Fernandez Piedade, Nigel C. A. Pitman, José Ferreira Ramos, Abel Monteagudo Mendoza, Eduardo Martins Venticinque, Bruno Garcia Luize, Percy Núñez Vargas, Thiago Sanna Freire Silva, Evlyn Márcia Moraes de Leão Novo, Neidiane Farias Costa Reis, John Terborgh, Angelo Gilberto Manzatto, Katia Regina Casula, Euridice N. Honorio Coronado, Juan Carlos Montero, Alvaro Duque, Flávia R. C. Costa, Nicolás Castaño Arboleda, Jochen Schöngart, Charles Eugene Zartman, Timothy J. Killeen, Beatriz S. Marimon, Ben Hur Marimon-Junior, Rodolfo Vasquez, Bonifacio Mostacedo, Layon O. Demarchi, Ted R. Feldpausch, Julien Engel, Pascal Petronelli, Chris Baraloto, Rafael L. Assis, Hernán Castellanos, Marcelo Fragomeni Simon, Marcelo Brilhante de Medeiros, Adriano Quaresma, Susan G. W. Laurance, Lorena M. Rincón, Ana Andrade, Thaiane R. Sousa, José Luís Camargo, Juliana Schietti, William F. Laurance, Helder Lima de Queiroz, Henrique Eduardo Mendonça Nascimento, Maria Aparecida Lopes, Emanuelle de Sousa Farias, José Leonardo Lima Magalhães, Roel Brienen, Gerardo A. Aymard C., Juan David Cardenas Revilla, Ima Célia Guimarães Vieira, Bruno Barçante Ladvocat Cintra, Pablo R. Stevenson, Yuri Oliveira Feitosa, Joost F. Duivenvoorden, Hugo F. Mogollón, Alejandro Araujo-Murakami, Leandro Valle Ferreira, José Rafael Lozada, James A. Comiskey, José Julio de Toledo, Gabriel Damasco, Nállarett Dávila, Aline Lopes, Roosevelt García-Villacorta, Freddie Draper, Alberto Vicentini, Fernando Cornejo Valverde, Jon Lloyd, Vitor H. F. Gomes, David Neill, Alfonso Alonso, Francisco Dallmeier, Fernanda Coelho de Souza, Rogerio Gribel, Luzmila Arroyo, Fernanda Antunes Carvalho, Daniel Praia Portela de Aguiar, Dário Dantas do Amaral, Marcelo Petratti Pansonato, Kenneth J. Feeley, Erika Berenguer, Paul V. A. Fine, Marcelino Carneiro Guedes, Jos Barlow, Joice Ferreira, Boris Villa, Maria Cristina Peñuela Mora, Eliana M. Jimenez, Juan Carlos Licona, Carlos Cerón, Raquel Thomas, Paul Maas, Marcos Silveira, Terry W. Henkel, Juliana Stropp, Marcos Ríos Paredes, Kyle G. Dexter, Doug Daly, Tim R. Baker, Isau Huamantupa-Chuquimaco, William Milliken, Toby Pennington, J. Sebastián Tello, José Luis Marcelo Pena, Carlos A. Peres, Bente Klitgaard, Alfredo Fuentes, Miles R. Silman, Anthony Di Fiore, Patricio von Hildebrand, Jerome Chave, Tinde R. van Andel, Renato Richard Hilário, Juan Fernando Phillips, Gonzalo Rivas-Torres, Janaína Costa Noronha, Adriana Prieto, Therany Gonzales, Rainiellene de Sá Carpanedo, George Pepe Gallardo Gonzales, Ricardo Zárate Gómez, Domingos de Jesus Rodrigues, Egleé L. Zent, Ademir R. Ruschel, Vincent Antoine Vos, Émile Fonty, André Braga Junqueira, Hilda Paulette Dávila Doza, Bruce Hoffman, Stanford Zent, Edelcilio Marques Barbosa, Yadvinder Malhi, Luiz Carlos de Matos Bonates, Ires Paula de Andrade Miranda, Natalino Silva, Flávia Rodrigues Barbosa, César I. A. Vela, Linder Felipe Mozombite Pinto, Agustín Rudas, Bianca Weiss Albuquerque, Maria Natalia Umaña, Yrma Andreina Carrero Márquez, Geertje van der Heijden, Kenneth R. Young, Milton Tirado, Diego F. Correa, Rodrigo Sierra, Janaina Barbosa Pedrosa Costa, Maira Rocha, Emilio Vilanova Torre, Ophelia Wang, Alexandre A. Oliveira, Michelle Kalamandeen, Corine Vriesendorp, Hirma Ramirez-Angulo, Milena Holmgren, Marcelo Trindade Nascimento, David Galbraith, Bernardo Monteiro Flores, Veridiana Vizoni Scudeller, Angela Cano, Manuel Augusto Ahuite Reategui, Italo Mesones, Cláudia Baider, Casimiro Mendoza, Roderick Zagt, Ligia Estela Urrego Giraldo, Cid Ferreira, Daniel Villarroel, Reynaldo Linares-Palomino, William Farfan-Rios, William Farfan-Rios, Luisa Fernanda Casas, Sasha Cárdenas, Henrik Balslev, Armando Torres-Lezama, Miguel N. Alexiades, Karina Garcia-Cabrera, Luis Valenzuela Gamarra, Elvis H. Valderrama Sandoval, Freddy Ramirez Arevalo, Lionel Hernandez, Adeilza Felipe Sampaio, Susamar Pansini, Walter Palacios Cuenca, Edmar Almeida de Oliveira, Daniela Pauletto, Aurora Levesley, Karina Melgaço, Georgia Pickavance, Biased-corrected richness estimates for the Amazonian tree flora, Scientific Reports, 10.1038/s41598-020-66686-3, 10, 1, (2020).
- Rebecca B Harris, Jeffrey D Jensen, Considering Genomic Scans for Selection as Coalescent Model Choice, Genome Biology and Evolution, 10.1093/gbe/evaa093, 12, 6, (871-877), (2020).
- Juan Deng, Xing-Long Xie, Dong-Feng Wang, Chao Zhao, Feng-Hua Lv, Xin Li, Ji Yang, Jia-Lin Yu, Min Shen, Lei Gao, Jing-Quan Yang, Ming-Jun Liu, Wen-Rong Li, Yu-Tao Wang, Feng Wang, Jin-Quan Li, EEr Hehua, Yong-Gang Liu, Zhi-Qiang Shen, Yan-Ling Ren, Guang-Jian Liu, Ze-Hui Chen, Neena A. Gorkhali, Hossam E. Rushdi, Hosein Salehian-Dehkordi, Ali Esmailizadeh, Maryam Nosrati, Samuel R. Paiva, Alexandre R. Caetano, Ondřej Štěpánek, Ingrid Olsaker, Christina Weimann, Georg Erhardt, Ino Curik, Juha Kantanen, Joram M. Mwacharo, Olivier Hanotte, Michael W. Bruford, Elena Ciani, Kathiravan Periasamy, Marcel Amills, Johannes A. Lenstra, Jian-Lin Han, Hong-Ping Zhang, Li Li, Meng-Hua Li, Paternal Origins and Migratory Episodes of Domestic Sheep, Current Biology, 10.1016/j.cub.2020.07.077, (2020).
- Ernesto Carrella, Steven Saul, Kristin Marshall, Matthew G. Burgess, Reniel B. Cabral, Richard M. Bailey, Chris Dorsett, Michael Drexler, Jens Koed Madsen, Andreas Merkl, Simple Adaptive Rules Describe Fishing Behaviour Better than Perfect Rationality in the US West Coast Groundfish Fishery, Ecological Economics, 10.1016/j.ecolecon.2019.106449, 169, (106449), (2020).
- Suzuki Setsuko, Kyoko Sugai, Ichiro Tamaki, Koji Takayama, Hidetoshi Kato, Hiroshi Yoshimaru, Genetic diversity, structure, and demography of Pandanus boninensis (Pandanaceae) with sea drifted seeds, endemic to the Ogasawara Islands of Japan: Comparison between young and old islands, Molecular Ecology, 10.1111/mec.15383, 29, 6, (1050-1068), (2020).
- Emilie Dumas, Alice Feurtey, Ricardo C. Rodríguez de la Vega, Stéphanie Le Prieur, Alodie Snirc, Monika Coton, Anne Thierry, Emmanuel Coton, Mélanie Le Piver, Daniel Roueyre, Jeanne Ropars, Antoine Branca, Tatiana Giraud, Independent domestication events in the blue‐cheese fungus Penicillium roqueforti, Molecular Ecology, 10.1111/mec.15359, 29, 14, (2639-2660), (2020).
- Miguel Arenas, Amaya Gorostiza, Juan Miguel Baquero, Elena Campoy, Catarina Branco, Héctor Rangel-Villalobos, Antonio González-Martín, The Early Peopling of the Philippines based on mtDNA, Scientific Reports, 10.1038/s41598-020-61793-7, 10, 1, (2020).
- Mirna Vázquez-Rosas-Landa, Gabriel Yaxal Ponce-Soto, Jonás A. Aguirre-Liguori, Shalabh Thakur, Enrique Scheinvar, Josué Barrera-Redondo, Enrique Ibarra-Laclette, David S. Guttman, Luis E. Eguiarte, Valeria Souza, Population genomics of Vibrionaceae isolated from an endangered oasis reveals local adaptation after an environmental perturbation, BMC Genomics, 10.1186/s12864-020-06829-y, 21, 1, (2020).
- Fabian Jörg Fischer, Nicolas Labrière, Grégoire Vincent, Bruno Hérault, Alfonso Alonso, Hervé Memiaghe, Pulchérie Bissiengou, David Kenfack, Sassan Saatchi, Jérôme Chave, A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories, Remote Sensing of Environment, 10.1016/j.rse.2020.112056, 251, (112056), (2020).
- A. V. Stolyarova, E. Nabieva, V. V. Ptushenko, A. V. Favorov, A. V. Popova, A. D. Neverov, G. A. Bazykin, Senescence and entrenchment in evolution of amino acid sites, Nature Communications, 10.1038/s41467-020-18366-z, 11, 1, (2020).
- Hajime Ikeda, Valentin Yakubov, Vyacheslav Barkalov, Kazuhiro Sato, Noriyuki Fujii, East Asian origin of the widespread alpine snow‐bed herb, Primula cuneifolia (Primulaceae), in the northern Pacific region, Journal of Biogeography, 10.1111/jbi.13918, 47, 10, (2181-2193), (2020).
- Feng Dong, Shou-Hsien Li, Chi-Cheng Chiu, Lu Dong, Cheng-Te Yao, Xiao-Jun Yang, Strict allopatric speciation of sky island Pyrrhula erythaca species complex, Molecular Phylogenetics and Evolution, 10.1016/j.ympev.2020.106941, 153, (106941), (2020).
- Dwueng-Chwuan Jhwueng, Building an adaptive trait simulator package to infer parametric diffusion model along phylogenetic tree, MethodsX, 10.1016/j.mex.2020.100978, 7, (100978), (2020).
- Bruno Nevado, Stephen A. Harris, Mark A. Beaumont, Simon J. Hiscock, Rapid homoploid hybrid speciation in British gardens: The origin of Oxford ragwort (Senecio squalidus), Molecular Ecology, 10.1111/mec.15630, 0, 0, (2020).
- Thomas Oudman, Kevin Laland, Graeme Ruxton, Ingunn Tombre, Paul Shimmings, Jouke Prop, Young Birds Switch but Old Birds Lead: How Barnacle Geese Adjust Migratory Habits to Environmental Change, Frontiers in Ecology and Evolution, 10.3389/fevo.2019.00502, 7, (2020).
- Sofia Ruiz-Suarez, Vianey Leos-Barajas, Ignacio Alvarez-Castro, Juan Manuel Morales, Using approximate Bayesian inference for a “steps and turns” continuous-time random walk observed at regular time intervals, PeerJ, 10.7717/peerj.8452, 8, (e8452), (2020).
- Hanna Märkle, Aurélien Tellier, Inference of coevolutionary dynamics and parameters from host and parasite polymorphism data of repeated experiments, PLOS Computational Biology, 10.1371/journal.pcbi.1007668, 16, 3, (e1007668), (2020).
- Shota Sakaguchi, Atsushi J Nagano, Masaki Yasugi, Hiroshi Kudoh, Naoko Ishikawa, Motomi Ito, Genetic consequences of being a dwarf: do evolutionary changes in life-history traits influence gene flow patterns in populations of the world’s smallest goldenrod?, Annals of Botany, 10.1093/aob/mcaa062, (2020).
- Franziska Taubert, Jessica Hetzer, Julia Sabine Schmid, Andreas Huth, Confronting an individual-based simulation model with empirical community patterns of grasslands, PLOS ONE, 10.1371/journal.pone.0236546, 15, 7, (e0236546), (2020).
- Erica Bianco, Guillaume Laval, Neus Font-Porterias, Carla García-Fernández, Begoña Dobon, Rubén Sabido-Vera, Emilija Sukarova Stefanovska, Vaidutis Kučinskas, Halyna Makukh, Horolma Pamjav, Lluis Quintana-Murci, Mihai G Netea, Jaume Bertranpetit, Francesc Calafell, David Comas, Recent Common Origin, Reduced Population Size, and Marked Admixture Have Shaped European Roma Genomes, Molecular Biology and Evolution, 10.1093/molbev/msaa156, (2020).
- Mateus S Souza, Andréa T Thomaz, Nelson J R Fagundes, River capture or ancestral polymorphism: an empirical genetic test in a freshwater fish using approximate Bayesian computation, Biological Journal of the Linnean Society, 10.1093/biolinnean/blaa140, (2020).
- Théophile Sanchez, Jean Cury, Guillaume Charpiat, Flora Jay, Deep learning for population size history inference: Design, comparison and combination with approximate Bayesian computation, Molecular Ecology Resources, 10.1111/1755-0998.13224, 0, 0, (2020).
- Claudio S. Quilodrán, Alexandros Tsoupas, Mathias Currat, The Spatial Signature of Introgression After a Biological Invasion With Hybridization, Frontiers in Ecology and Evolution, 10.3389/fevo.2020.569620, 8, (2020).
- Nadja Klein, David J. Nott, Michael Stanley Smith, Marginally-calibrated deep distributional regression, Journal of Computational and Graphical Statistics, 10.1080/10618600.2020.1807996, (1-41), (2020).
- Iva Popovic, Ambrocio Melvin A. Matias, Nicolas Bierne, Cynthia Riginos, Twin introductions by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia, Evolutionary Applications, 10.1111/eva.12857, 13, 3, (515-532), (2019).
- Megan L. Smith, Bryan C. Carstens, Process‐based species delimitation leads to identification of more biologically relevant species*, Evolution, 10.1111/evo.13878, 74, 2, (216-229), (2019).
- Rachel A. Slatyer, Sean D. Schoville, César R. Nufio, Lauren B. Buckley, Do different rates of gene flow underlie variation in phenotypic and phenological clines in a montane grasshopper community?, Ecology and Evolution, 10.1002/ece3.5961, 10, 2, (980-997), (2019).
- Chris C. R. Smith, Samuel M. Flaxman, Leveraging whole genome sequencing data for demographic inference with approximate Bayesian computation, Molecular Ecology Resources, 10.1111/1755-0998.13092, 20, 1, (125-139), (2019).
- Juan Viruel, Nicolas Le Galliot, Samuel Pironon, Gonzalo Nieto Feliner, Jean‐Pierre Suc, Fatma Lakhal‐Mirleau, Marianick Juin, Marjorie Selva, Magda Bou Dagher Kharrat, Lahcen Ouahmane, Stefano La Malfa, Katia Diadema, Hervé Sanguin, Frédéric Médail, Alex Baumel, A strong east–west Mediterranean divergence supports a new phylogeographic history of the carob tree (Ceratonia siliqua, Leguminosae) and multiple domestications from native populations, Journal of Biogeography, 10.1111/jbi.13726, 47, 2, (460-471), (2019).
- E. R. Lines, M. A. Zavala, P. Ruiz‐Benito, D. A. Coomes, Capturing juvenile tree dynamics from count data using Approximate Bayesian Computation, Ecography, 10.1111/ecog.04824, 43, 3, (406-418), (2019).
- Zhen Li, Jinchuan Zhang, Xuan Tang, Yu Gao, Zhipeng Huo, Pei Li, Junlan Liu, Dajian Gong, Approaches for the evaluation of favorable shale gas areas and applications: Implications for China's exploration strategy, Energy Science & Engineering, 10.1002/ese3.531, 8, 2, (270-290), (2019).
- Anne Kandler, Enrico R. Crema, Analysing Cultural Frequency Data: Neutral Theory and Beyond, Handbook of Evolutionary Research in Archaeology, 10.1007/978-3-030-11117-5, (83-108), (2019).
- Mark A. Beaumont, Approximate Bayesian Computation, Annual Review of Statistics and Its Application, 10.1146/annurev-statistics-030718-105212, 6, 1, (379-403), (2019).
- Jennifer L. Caswell-Jin, Katherine McNamara, Johannes G. Reiter, Ruping Sun, Zheng Hu, Zhicheng Ma, Jie Ding, Carlos J. Suarez, Susanne Tilk, Akshara Raghavendra, Victoria Forte, Suet-Feung Chin, Helen Bardwell, Elena Provenzano, Carlos Caldas, Julie Lang, Robert West, Debu Tripathy, Michael F. Press, Christina Curtis, Clonal replacement and heterogeneity in breast tumors treated with neoadjuvant HER2-targeted therapy, Nature Communications, 10.1038/s41467-019-08593-4, 10, 1, (2019).
- Mayukh Mondal, Jaume Bertranpetit, Oscar Lao, Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania, Nature Communications, 10.1038/s41467-018-08089-7, 10, 1, (2019).
- Samuel Alizon, Carmen Lía Murall, Emma Saulnier, Mircea Sofonea, Detecting within-host interactions from genotype combination prevalence data, Epidemics, 10.1016/j.epidem.2019.100349, (2019).
- Nora Scarcelli, Philippe Cubry, Roland Akakpo, Anne-Céline Thuillet, Jude Obidiegwu, Mohamed N. Baco, Emmanuel Otoo, Bonaventure Sonké, Alexandre Dansi, Gustave Djedatin, Cédric Mariac, Marie Couderc, Sandrine Causse, Karine Alix, Hâna Chaïr, Olivier François, Yves Vigouroux, Yam genomics supports West Africa as a major cradle of crop domestication, Science Advances, 10.1126/sciadv.aaw1947, 5, 5, (eaaw1947), (2019).
- Kaustubh Adhikari, Javier Mendoza-Revilla, Anood Sohail, Macarena Fuentes-Guajardo, Jodie Lampert, Juan Camilo Chacón-Duque, Malena Hurtado, Valeria Villegas, Vanessa Granja, Victor Acuña-Alonzo, Claudia Jaramillo, William Arias, Rodrigo Barquera Lozano, Paola Everardo, Jorge Gómez-Valdés, Hugo Villamil-Ramírez, Caio C. Silva de Cerqueira, Tábita Hunemeier, Virginia Ramallo, Lavinia Schuler-Faccini, Francisco M. Salzano, Rolando Gonzalez-José, Maria-Cátira Bortolini, Samuel Canizales-Quinteros, Carla Gallo, Giovanni Poletti, Gabriel Bedoya, Francisco Rothhammer, Desmond J. Tobin, Matteo Fumagalli, David Balding, Andrés Ruiz-Linares, A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia, Nature Communications, 10.1038/s41467-018-08147-0, 10, 1, (2019).
- Gustavo S. Cabanne, Leonardo Campagna, Natalia Trujillo-Arias, Kasuya Naoki, Isabel Gómez, Cristina Y. Miyaki, Fabricio R. Santos, Giselle P. M. Dantas, Alexandre Aleixo, Santiago Claramunt, Amanda Rocha, Renato Caparroz, Irby J. Lovette, Pablo L. Tubaro, Phylogeographic variation within the Buff-browed Foliage-gleaner (Aves: Furnariidae: Syndactyla rufosuperciliata) supports an Andean-Atlantic forests connection via the Cerrado, Molecular Phylogenetics and Evolution, 10.1016/j.ympev.2019.01.011, (2019).
- Bo Delling, Stefan Palm, Evolution and disappearance of sympatric Coregonus albula in a changing environment—A case study of the only remaining population pair in Sweden, Ecology and Evolution, 10.1002/ece3.5745, 9, 22, (12727-12753), (2019).
- J.H. Hendricks, C. Neumann, A Bayesian approach for the analysis of error rate studies in forensic science, Forensic Science International, 10.1016/j.forsciint.2019.110047, (2019).
- Fangyuan Cheng, Qian Wang, Pierpaolo Maisano Delser, Chenhong Li, Multiple freshwater invasions of the tapertail anchovy (Clupeiformes: Engraulidae) of the Yangtze River, Ecology and Evolution, 10.1002/ece3.5708, 9, 21, (12202-12215), (2019).
- Megan Ruffley, Katie Peterson, Bob Week, David C. Tank, Luke J. Harmon, Identifying models of trait‐mediated community assembly using random forests and approximate Bayesian computation, Ecology and Evolution, 10.1002/ece3.5773, 9, 23, (13218-13230), (2019).
- Rui-Sen Lu, Yang Chen, Ichiro Tamaki, Shota Sakaguchi, Yan-Qian Ding, Daiki Takahashi, Pan Li, Yuji Isaji, Jun Chen, Ying-Xiong Qiu, Pre-Quaternary diversification and glacial demographic expansions of Cardiocrinum (Liliaceae) in temperate forest biomes of Sino-Japanese Floristic Region, Molecular Phylogenetics and Evolution, 10.1016/j.ympev.2019.106693, (106693), (2019).
- Cecilia F. Fiorini, Elen Arroyo Peres, Márcio José da Silva, Andréa Onofre Araujo, Eduardo Leite Borba, Vera Nisaka Solferini, Phylogeography of the specialist plant Mandirola hirsuta (Gesneriaceae) suggests ancient habitat fragmentation due to savanna expansion, Flora, 10.1016/j.flora.2019.151522, (151522), (2019).
- Eva Hodková, Jana Doudová, Jan Douda, Karol Krak, Bohumil Mandák, On the road: Postglacial history and recent expansion of the annual Atriplex tatarica in Europe, Journal of Biogeography, 10.1111/jbi.13687, 46, 11, (2609-2621), (2019).
- Adam Bessa-Silva, Marcelo Vallinoto, Iracilda Sampaio, Oscar A. Flores-Villela, Eric N. Smith, Fernando Sequeira, The roles of vicariance and dispersal in the differentiation of two species of the Rhinella marina species complex, Molecular Phylogenetics and Evolution, 10.1016/j.ympev.2019.106723, (106723), (2019).
- Alexandre Rêgo, Frank J. Messina, Zachariah Gompert, Dynamics of genomic change during evolutionary rescue in the seed beetle Callosobruchus maculatus, Molecular Ecology, 10.1111/mec.15085, 28, 9, (2136-2154), (2019).
- Konstans Wells, Rodrigo K. Hamede, Menna E. Jones, Paul A. Hohenlohe, Andrew Storfer, Hamish I. McCallum, Individual and temporal variation in pathogen load predicts long‐term impacts of an emerging infectious disease, Ecology, 10.1002/ecy.2613, 100, 3, (2019).
- Mason Youngblood, Conformity bias in the cultural transmission of music sampling traditions, Royal Society Open Science, 10.1098/rsos.191149, 6, 9, (191149), (2019).
- Alison F. Feder, Pleuni S. Pennings, Joachim Hermisson, Dmitri A. Petrov, Evolutionary Dynamics in Structured Populations Under Strong Population Genetic Forces, G3: Genes|Genomes|Genetics, 10.1534/g3.119.400605, 9, 10, (3395-3407), (2019).
- Cheng-Cheng Shao, Ting-Ting Shen, Wei-Tao Jin, Han-Jie Mao, Jin-Hua Ran, Xiao-Quan Wang, Phylotranscriptomics resolves interspecific relationships and indicates multiple historical out-of-North America dispersals through the Bering Land Bridge for the genus Picea (Pinaceae), Molecular Phylogenetics and Evolution, 10.1016/j.ympev.2019.106610, (106610), (2019).
- Amanda Minter, Renata Retkute, Approximate Bayesian Computation for infectious disease modelling, Epidemics, 10.1016/j.epidem.2019.100368, (100368), (2019).
- Chiara Barbieri, Rodrigo Barquera, Leonardo Arias, José R Sandoval, Oscar Acosta, Camilo Zurita, Abraham Aguilar-Campos, Ana M Tito-Álvarez, Ricardo Serrano-Osuna, Russell D Gray, Fabrizio Mafessoni, Paul Heggarty, Kentaro K Shimizu, Ricardo Fujita, Mark Stoneking, Irina Pugach, Lars Fehren-Schmitz, The Current Genomic Landscape of Western South America: Andes, Amazonia, and Pacific Coast, Molecular Biology and Evolution, 10.1093/molbev/msz174, (2019).
- Bárbara Simões Santos Leal, Vanessa Araujo Graciano, Cleber Juliano Neves Chaves, Luis Alberto Pillaca Huacre, Myriam Heuertz, Clarisse Palma-Silva, Dispersal and local persistence shape the genetic structure of a widespread Neotropical plant species with a patchy distribution, Annals of Botany, 10.1093/aob/mcz105, (2019).
- Flora Jay, Simon Boitard, Frédéric Austerlitz, An ABC Method for Whole-Genome Sequence Data: Inferring Paleolithic and Neolithic Human Expansions, Molecular Biology and Evolution, 10.1093/molbev/msz038, (2019).
- Daniel Pacheco Bruschi, Elen Arroyo Peres, Luciana Bolsoni Lourenço, Luiz Filipe de Macedo Bartoleti, Thadeu Sobral-Souza, Shirlei Maria Recco-Pimentel, Signature of the Paleo-Course Changes in the São Francisco River as Source of Genetic Structure in Neotropical Pithecopus nordestinus (Phyllomedusinae, Anura) Treefrog, Frontiers in Genetics, 10.3389/fgene.2019.00728, 10, (2019).
- Juan Carlos Illera, Miguel Arenas, Carlos A. López-Sánchez, José Ramón Obeso, Paola Laiolo, Gradual Distance Dispersal Shapes the Genetic Structure in an Alpine Grasshopper, Genes, 10.3390/genes10080590, 10, 8, (590), (2019).
- Masaya Yamamoto, Daiki Takahashi, Kiyoshi Horita, Hiroaki Setoguchi, Speciation and subsequent secondary contact in two edaphic endemic primroses driven by Pleistocene climatic oscillation, Heredity, 10.1038/s41437-019-0245-8, (2019).
- Zheng Hu, Jie Ding, Zhicheng Ma, Ruping Sun, Jose A. Seoane, J. Scott Shaffer, Carlos J. Suarez, Anna S. Berghoff, Chiara Cremolini, Alfredo Falcone, Fotios Loupakis, Peter Birner, Matthias Preusser, Heinz-Josef Lenz, Christina Curtis, Quantitative evidence for early metastatic seeding in colorectal cancer, Nature Genetics, 10.1038/s41588-019-0423-x, (2019).
- Caroline Turchetto, Ana L A Segatto, Gustavo A Silva-Arias, Julia Beduschi, Cris Kuhlemeier, Sandro L Bonatto, Loreta B Freitas, Contact zones and their consequences: hybridization between two ecologically isolated wild Petunia species, Botanical Journal of the Linnean Society, 10.1093/botlinnean/boz022, (2019).
- Scott T Small, Frédéric Labbé, Yaya I Coulibaly, Thomas B Nutman, Christopher L King, David Serre, Peter A Zimmerman, Human Migration and the Spread of the Nematode Parasite Wuchereria bancrofti, Molecular Biology and Evolution, 10.1093/molbev/msz116, (2019).
- Jonathan Romero-Cuellar, Antonino Abbruzzo, Giada Adelfio, Félix Francés, Hydrological post-processing based on approximate Bayesian computation (ABC), Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-019-01694-y, (2019).
- Ke Bi, Tyler Linderoth, Sonal Singhal, Dan Vanderpool, James L. Patton, Rasmus Nielsen, Craig Moritz, Jeffrey M. Good, Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change, PLOS Genetics, 10.1371/journal.pgen.1008119, 15, 5, (e1008119), (2019).
- Martin Kuhlwilm, Sojung Han, Vitor C. Sousa, Laurent Excoffier, Tomas Marques-Bonet, Ancient admixture from an extinct ape lineage into bonobos, Nature Ecology & Evolution, 10.1038/s41559-019-0881-7, (2019).
- Zhe Cai, Lian Zhou, Ning-Ning Ren, Xun Xu, Rong Liu, Lei Huang, Xiao-Ming Zheng, Qing-Lin Meng, Yu-Su Du, Mei-Xia Wang, Mu-Fan Geng, Wen-Li Chen, Chun-Yan Jing, Xin-Hui Zou, Jie Guo, Cheng-Bin Chen, Hua-Zhong Zeng, Yun-Tao Liang, Xing-Hua Wei, Ya-Long Guo, Hai-Fei Zhou, Fu-Min Zhang, Song Ge, Parallel Speciation of Wild Rice Associated with Habitat Shifts, Molecular Biology and Evolution, 10.1093/molbev/msz029, (2019).
- Rilquer Mascarenhas, Cristina Yumi Miyaki, Ricardo Dobrovolski, Henrique Batalha-Filho, Late Pleistocene climate change shapes population divergence of an Atlantic Forest passerine: a model-based phylogeographic hypothesis test, Journal of Ornithology, 10.1007/s10336-019-01650-1, (2019).
- Ichiro Tamaki, Naomichi Kawashima, Suzuki Setsuko, Jung-Hyun Lee, Akemi Itaya, Kyohei Yukitoshi, Nobuhiro Tomaru, Population genetic structure and demography of Magnolia kobus: variety borealis is not supported genetically, Journal of Plant Research, 10.1007/s10265-019-01134-6, (2019).
- Joao A.N. Filipe, Ilias Kyriazakis, Bayesian, Likelihood-Free Modelling of Phenotypic Plasticity and Variability in Individuals and Populations, Frontiers in Genetics, 10.3389/fgene.2019.00727, 10, (2019).
- Mary B O’Neill, Guillaume Laval, João C Teixeira, Ann C Palmenberg, Caitlin S Pepperell, Genetic susceptibility to severe childhood asthma and rhinovirus-C maintained by balancing selection in humans for 150 000 years, Human Molecular Genetics, 10.1093/hmg/ddz304, (2019).
- Xuejing Wang, Kathryn H. Maher, Nan Zhang, Pinjia Que, Chenqing Zheng, Simin Liu, Biao Wang, Qin Huang, De Chen, Xu Yang, Zhengwang Zhang, Tamás Székely, Araxi O. Urrutia, Yang Liu, Demographic Histories and Genome-Wide Patterns of Divergence in Incipient Species of Shorebirds, Frontiers in Genetics, 10.3389/fgene.2019.00919, 10, (2019).
- Christopher Blair, Cécile Ané, Phylogenetic Trees and Networks Can Serve as Powerful and Complementary Approaches for Analysis of Genomic Data, Systematic Biology, 10.1093/sysbio/syz056, (2019).
- B. N. Reid, J. M. Kass, S. Wollney, E. L. Jensen, M. A. Russello, E. M. Viola, J. Pantophlet, J. B. Iverson, M. Z. Peery, C. J. Raxworthy, E. Naro-Maciel, Disentangling the genetic effects of refugial isolation and range expansion in a trans-continentally distributed species, Heredity, 10.1038/s41437-018-0135-5, 122, 4, (441-457), (2018).
- Aude Lalis, Stefano Mona, Emmanuelle Stoetzel, François Bonhomme, Karim Souttou, Ali Ouarour, Stéphane Aulagnier, Christiane Denys, Violaine Nicolas, Out of Africa: demographic and colonization history of the Algerian mouse (Mus spretus Lataste), Heredity, 10.1038/s41437-018-0089-7, 122, 2, (150-171), (2018).
- Isobel Routledge, Martin Walker, Robert A. Cheke, Samir Bhatt, Pierre Baleguel Nkot, Graham A. Matthews, Didier Baleguel, Hans M. Dobson, Terry L. Wiles, Maria-Gloria Basañez, Modelling the impact of larviciding on the population dynamics and biting rates of Simulium damnosum (s.l.): implications for vector control as a complementary strategy for onchocerciasis elimination in Africa, Parasites & Vectors, 10.1186/s13071-018-2864-y, 11, 1, (2018).
- See more




